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Outline

 APS upgrade (“APS-U”) overview
 Modeling tools and methods
 Results for multi-particle, multi-bunch simulations

– Stability for uniform fills
– Stability under loss of a bunch
– Stability while filling the ring

 Conclusion
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Multi-bend achromat lattice1 for APS-U2

H7BA lattice based on L. Farvacque et al., IPAC13, 79.
1: D. Einfeld et al., SPIES 2013, 201 (1993).
2: M. Borland et al., IPAC15, 1776 (2015).
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Planned APS-U operating modes

 Single-bunch on-axis swap-out injection
– Each bucket is filled by a single shot from the injector
– Accommodates small apertures, unusual insertion devices

 Targeting 200 mA in various fill patterns 
– 324-bunch uniform

• Desirable for long lifetime and highest brightness
• Close to limit of present fast kicker technology
• 2.2 nC/bunch

– 48-bunch uniform
• Desirable for timing experiments
• 15 nC/bunch

– Possible hybrid or non-uniform modes under study
 Passive higher-harmonic cavity (HHC) required to lengthen bunch

– Reduce intrabeam scattering, increase Touschek lifetime 
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Simulation tools

 Computation of geometric wakes
– GdfidL1 
– ECHO2

 Computation of cavity modes
– URMEL3

– Measurement
 Tracking with collective effects

– Parallel version of elegant4,5

 Setup, post-processing, and visualization
– clinchor6

– TAPAs7

– SDDS8

– ImageMagick
 Blues cluster at Argonne LCRC

1: W. Bruns, Linac 2002, 418.
2: I. A. Zagorodnov et al. PRSTAB 8, 042001.
3: T. Weiland, NIM 216, 329 (1983).
4: Y. Wang et al., PAC07, 3456.
5: M. Borland et al., IPAC15, 549.
6: L. Emery, PAC93, 3360.
6: M. Borland, PAC2013, 1364.
7: R. Soliday et al., PAC03, 3473.
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Simulation of short-range wakes

 Simulations include
– Resistive wakes from analytical expressions

• Longitudinal wake
• Transverse dipole wakes

– Geometric wake potentials
• Longitudinal wake
• Transverse dipole and quadrupole wakes

 Used in elegant via impedance formalism
– FFT-based convolution of time-dependent charge-weighted moments 

of beam distribution with the wake potentials
– ZLONGIT and ZTRANSVERSE elements in elegant
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APS-Upgrade short-range impedance 
model

 Total wakefield/impedance found by summing over all contributions 
weighted by the local beta function

 More details in R. Lindberg's presentation

Impedance elements used in model

R. Lindberg et al., IPAC15, 1823-1825.
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Long-range non-resonant wakes

 Resistive wall effects can extend over many bunches and turns
 Modeled using LRWAKE element in elegant

– Time domain computation
– Point-bunch approximation

 For APS-U simulations, wakes extended over 10 turns (37 μs)
– Include longitudinal and transverse dipole wakes
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Resonant wakes

 We include only cavity modes in this category
– Characterized by frequency, Q, and shunt impedance
– RFMODE and TRFMODE elements for single monopole and dipole modes
– FRFMODE and FTRFMODE for multiple modes from a file

 Implemented using fundamental theorem of beam loading and 
phasors
– Modes driven by time-dependent charge-weighted moments of each 

passing bunch
– Phasor rotation and damping used to advance fields

 For APS-U, use this method to include
– Passive 1.4 GHz Higher Harmonic Cavity (RFMODE)
– 120 parasitic monopole modes in main cavities (FRFMODE)
– 168 parasitic dipole modes in main cavities (FTRFMODE)
– 12 beam-loaded, generator-driven, 352-MHz main cavities with feedback
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Coupling of Rf Feedback and Beam Dynamics1

 Rf system feedback changes cavity impedance seen by beam
– Can affect stability

 RFMODE element accepts voltage and phase setpoints for rf feedback 
systems
– Feedback is configured by user-supplied IIR filters
– APS-U simulations use filters that emulate existing APS systems

1: T. Berenc et al., IPAC15, 540.
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Feedback on the beam

 Bunch-by-bunch feedback is included
– Longitudinal and transverse pickup and driver elements
– TFBDRIVER computes kicks using FIR filter to process TFBPICKUP 

signals
– Noise may be injected into input or output (not used here)

 Longitudinal feedback is unusual1

– Needs gain at DC because HHC depresses the synchrotron tune
– During filling, bunches slew in phase due to sawtooth variation of 

voltage in the cavities
• There's no simple “correct” phase for the bunches in this situation
• Doing feedback is easiest using a pickup that reads the momentum 

offset, not the beam phase

1: M. Borland et al., ICAP15, to be published.
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Other simulation components

 Beam transport
– ILMATRIX used for fast single-element simulation of ring lattice

• Includes nonlinear chromaticity and nonlinear momentum 
compaction

• Can also include tune shift with amplitude (not used here)
– SREFFECTS used for single-element simulation of synchrotron radiation 

damping and quantum excitation
– Simulations can also use element-by-element tracking and synchrotron 

radiation
• Much slower, but interesting as a cross-check (R. Lindberg's talk)

 Output data
– Bunch-by-bunch, turn-by-turn particle data, histograms, moments 
– Feedback pickup and driver data
– Data from rf cavity modes and feedback
– Written using parallel I/O to SDDS files1

1: H. Shang et al., ICAP09, 347.
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Simulations of operational scenarios

 We've simulated several operational scenarios1, including
1) Idealized, uniform 48-bunch fill
2) Uniform 48-bunch fill after one bunch gets lost due to 

swap-out failure
3) Filling the ring from zero

 Used typical set of “randomized” HOMs
– Expect longitudinal instability if no feedback2

• Landau damping from the HHC is not sufficient for 
longitudinal stability

– Expect transverse stability even if no feedback
• High coherent damping rate from chromaticity and 

short-range wake

1: M. Borland et al., ICAP15, to be published.
2: L. Emery et al., IPAC15, 1784.
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1: 48-bunch uniform fill pattern

 Questions to answer
– Is the beam stable without transverse/longitudinal feedback?
– If not, what are feedback requirements?

 Noise control and “quiet start” is important
– Use 100,000 particles per bunch
– Preload rf cavity modes and rf feedback with expected voltage,  phase
– Prepare bunch with expected non-gaussian longitudinal distribution 

due to HHC
– Ramp impedance up to full strength in 5000 turns

• About 1 damping time
• Sufficient time for rf feedback to respond
• Beam adiabatically responds to the short-range wake

– Wait ~2000 turns for full(er) equilibriation
– Give longitudinal and transverse kicks to the beam to assess stability
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Horizontal instability w/weak transverse feedback

For clarity, data for only 6 of 48 bunches show.

 With TFB limited at 
1 nrad pk, see 
unexpected 
instability in 
horizontal plane

 Without any TFB, 
beam is unstable 
even before getting 
pinged

 Anticipated that 
chromaticity would 
suppress this

100 micron x and y ping
0.1% energy ping
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Long-range resistive wall instability

 Bunch motion 
shows growing line 
at 1-νx 

 Characteristic of 
long-range RW 
instability1

 Instability absent if 
long-range RW 
wake removed 
from simulation

 Conclusion: TFB not 
optional, unlike APS 
today

1: F. Sacherer, 9th Conf. On High Energy Accel., 347 (1974).
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Feedback effort for quiet conditions

 3-4 nrad TFB effort 
sufficient to 
maintain stability

 10kV longitudinal 
feedback effort is 
significant 

 For undisturbed 
beam, can “cap” at 
1.8 kV without loss 
of stability
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2: Impact of a lost bunch (failed swap-out)

 Swap-out uses very fast 
kickers to extract one 
bunch and inject a 
replacement

 What if replacement 
fails to arrive?

 Simulated using a 
kicker to kill one bunch 
after equilibriation

 Without adequate 
longitudinal feedback 
strength, beam is lost

 Suspect involvement of 
two monopole HOMs

 This gives more 
realistic estimate of 
required LFB strength

Black: 1.8 kV LFB cap
Red: 6 kV LFB cap
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Variation in voltage and bunch phase

 Gap in bunch train 
results in sawtooth 
voltage variation in 
main rf cavities

 Also get variation in 
HHC voltage

 Bunches slew in time 
due to sawtooth 
voltage variation
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3: Filling from zero

 We must inject one full-current bunch into each target bucket
 Simulated this using a “balanced” fill order

– Intended to reduce sawtooth variation of rf voltage
 Simulations inject one bunch every 5000 turns or 18 ms

– Interval is far shorter than in reality
– More than a damping time in horizontal, longitudinal planes
– About the same as the rf feedback response time

 This simulation relies on elegant's SCRIPT element
– Allows arbitrary modification of a beam with an external 

program/script
– In this case, the “modification” is to add a bunch
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Head-tail instability for the first bunch

 Beam is eventually scraped on the 
horizontal physical aperture (±10mm 
assumed)

 TFB is not effective at suppressing this 
instability
– Needs further study, optimization
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Capture Improves as HHC Voltage Builds

 First 13 bunches 
injected suffer 
significant losses

 Later bunches are 
captured with 100% 
efficiency

 This corresponds to 
build-up in the 
voltage in the 
passive harmonic 
cavity
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HHC Reduces Bunch-Length Oscillations

 As HHC voltage builds, 
bunch length oscillates 
less, settles to longer 
value

 Effects of high- 
frequency horizontal 
impedance reduced

 Multi-stage swap-out 
will help, e.g.,
– Inject 48, 5nC 

bunches
– Replace with 10nC 

bunches
– Finally replace with 

15nC bunches
Black: bunch 1 (bucket 0); initial HHC voltage: 0
Red: bunch 23 (bucket 621); initial HHC voltage: 400kV
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Conclusions
 Simulation of collective effects for APS upgrade well advanced

– Single-particle dynamics include higher-order chromaticity and 
momentum compaction

– Multi-bunch, multi-particle per bunch tracking
– Short- and long-range resonant and non-resonant impedances
– Beam and rf feedback systems

 Simulated operational scenarios for 48-bunch mode, including
– Stored beam with a small imposed disturbance
– Stored beam with swap-out fault
– Filling from zero

 Findings
– Modest transverse feedback is required
– Longitudinal MBI suppression requires strong feedback
– Filling from zero with passive HHC presents some problems

• Multi-stage swap-out should resolve this
• Better tuning of transverse feedback may help
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