

Haisheng Xu, Paolo Craievich, Micha Dehler, Lukas Stingelin :: Paul Scherrer Institut

Study of Resistive-Wall Induced Microwave Instability for SLS-2

Second Topical Workshop on Instabilities, Impedance and Collective Effects (TWIICE 2)

- The Baseline Design of SLS-2 Storage Ring
- Calculation of Longitudinal Resistive-Wall Impedance (Longitudinal Wake function)
- Analysis of Microwave Instability in SLS-2 Storage Ring
- Summary & outlook on the future work

SLS and SLS-2 lattice parameters

----- with the same circumference, 288 m

Name	SLS*)	SLS-2 (db02l)		
status	operating	baseline		
Emittance at 2.4 GeV [pm]	5022	137		
Lattice type	TBA	7 BA		
Total absolute bending angle	360°	585°		
Working point Q _{x/y}	20.42 / 8.74	38.38 / 11.28		
Natural chromaticities C _{x/y}	-67.0 / -19.8	-67.5 / -36.0		
Optics strain ¹⁾	7.9	5.6		
Momentum compaction factor [10-4]	6.56	-1.39		
Dynamic acceptance [mm.mrad] ²⁾	46	10		
Radiated Power [kW] ³⁾	205	228		
rms energy spread [10 ⁻³]	0.86	1.05		
damping times x/y/E [ms]	9.0/9.0/4.5	4.5 / 8.0 / 6.4		

1) product of horiz. and vert. normalized chromaticities C/Q

2) max. horizontal betatron amplitude at stability limit for ideal lattice

3) assuming 400 mA stored current, bare lattice without IDs

*) SLS lattice d2r55, before FEMTO installation (<2005)

Courtesy of A. Streun

SLS-2 lattice: db02l (one superperiod=1/3 ring)

Choices of RF frequencies for SLS-2 ring

Vacuum chamber

- Round chamber with inner gap ~ 20 mm
- Copper chamber ($\rho_{Cu} = 1.68 \times 10^{-8} [\Omega \cdot m]$)
- NEG coating or not?

 $(
ho_{\textit{NEG}} = 9.1 imes 10^{-7} [arOmega \cdot m])$

• ImpedanceWake2D* code

or

Analytical formula**?

	Peak Voltage of the primary RF: V_{RF} [MV]	RMS bunch length @ zero current: σ_z [ps]
100 MHz; no harmonic cavity;	0.811	25.7
500 MHz; no harmonic cavity;	1.43	8.7
100 MHz + 300 MHz cavities #;	0.811	136.1
500 MHz + 1.5 GHz cavities #;	1.43	35.4

#: the ideal flat-potential condition is satisfied.

[*] N. Mounet. ImpedanceWake2D.

http://impedance.web.cern.ch/impedance/Codes/ImpedanceWake2D/user_manual_todate.txt

[**] Karl L.F. Bane and Matthew Sands, The Short-Range Resistive Wall Wakefields, SLAC-PUB-95-7074, Dec. 1995.

Bunch length

 $\sigma_{t0} = \frac{\alpha}{\nu_s \omega_0} \sigma_\delta$

Momentum compaction factor:

$$\alpha = \frac{I_1}{C} \qquad I_1 = \oint \frac{\eta_x}{\rho} ds$$

Synchrotron tune:

$$v_s^2 = \frac{h_{\rm RF}\alpha\sqrt{V_{\rm RF}^2 - U^2/e^2}}{2\pi E/e}\sigma_{\delta}$$

Energy loss per turn:

 $U_0 = \frac{2}{3} r_e m_e c^2 \gamma^4 I_2$ $I_2 = \oint \frac{ds}{\rho^2}$

- without NEG
- ImpedanceWake2D* code or Analytical formula**

[*] N. Mounet. ImpedanceWake2D.

http://impedance.web.cern.ch/impedance/Codes/ImpedanceWake2D/user_manual_todate.txt

[**] Karl L.F. Bane and Matthew Sands, The Short-Range Resistive Wall Wakefields, SLAC-PUB-95-7074, Dec. 1995.

• without NEG

• ImpedanceWake2D* code or Analytical formula**

[*] N. Mounet. ImpedanceWake2D.

http://impedance.web.cern.ch/impedance/Codes/ImpedanceWake2D/user_manual_todate.txt

[**] Karl L.F. Bane and Matthew Sands, The Short-Range Resistive Wall Wakefields, SLAC-PUB-95-7074, Dec. 1995.

- $1 \, \mu m$ NEG coating or without NEG
- ImpedanceWake2D* code

- $1 \, \mu m$ NEG coating or without NEG
- ImpedanceWake2D* code

Longitudinal Resistive-Wall Wake Functions

- $1 \, \mu m$ NEG coating or without NEG
- ImpedanceWake2D* code

ZOOM IN

- Longitudinal Short-Range Wake Function has been calculated by both analytical formula and ImpedanceWake2D code.
 - Good agreement has been shown when t > 20 [fs];
 - RMS bunch length (minimum is 8.7 [ps]) >> 20 [fs], we therefore keep the difference in mind and still use this code to calculate the wake function in the cases with NEG coating.
- NEG coating (e.g., $\rho_{NEG} = 9.1 \times 10^7 [\Omega \cdot m]$) gives longitudinal impedance in high frequency.

 $-\operatorname{Re}(Z_0^{\parallel}) \xrightarrow{} \operatorname{above} \xrightarrow{\sim} 10 [GHz]$ $\operatorname{Im}(Z^{\parallel}) \xrightarrow{} \operatorname{above} \xrightarrow{\sim} 0.1 [GHz]$

 $-\operatorname{Im}(Z_0^{\parallel}) \rightarrow \operatorname{above} \sim 0.1 [GHz]$

Microwave instability

• Average current \rightarrow 400 mA

- @ 100 MHz RF, uniform filling pattern, I_b = 4.17 mA (2.5 × 10¹⁰ e/bunch)
- @ 500 MHz RF, uniform filling pattern, I_b = 0.833 mA (5.0 \times 10⁹ e/bunch)
- @ 500 MHz RF, 390 normal bunches + 1 'camshaft', $I_{normal} \approx$ 1.015 mA (6. 0 × 10⁹ e/bunch), $I_{camshaft} \approx$ 4 mA (2. 4 × 10¹⁰ e/bunch)
- The threshold of microwave instability can be given by **Boussard criterion***

$$\left| \left(\frac{Z_{\parallel}}{n} \right)_{eff} \right| \le F' \frac{E_0}{e} \frac{|\eta|\gamma}{I_b} \frac{\sigma_z}{cT_0} \left(\frac{\Delta p_{FWHM}}{p_{\parallel}} \right)^2$$

where effective impedance** can be calculated in two ways:

(1)
$$\rightarrow \left(\frac{Z_{\parallel 0}}{n}\right)_{eff} = \omega_0 \cdot \left(\frac{Z_{\parallel 0}}{\omega}\right)_{eff} = \omega_0 \cdot \frac{\sum_{p=-\infty}^{\infty} \frac{Z_{\parallel 0}(\omega_p)}{\omega_p} h_m(\omega_p)}{\sum_{p=-\infty}^{\infty} h_m(\omega_p)}$$

The spectral density $h_m(\omega_p) = (\omega \sigma_\tau)^{2m} e^{-\omega^2 \sigma_\tau^2}$ with assumption of Gaussian bunch. Consider the m=1 mode only.

(2)
$$\rightarrow \left(\frac{Z_{\parallel 0}}{n}\right)_{eff} = \frac{Z_{\parallel}(\omega_b)}{\omega_b/\omega_0}; \ \omega_b = \frac{2\pi c}{\sigma_z}$$
 is a typical bunch frequency; ω_0 is angular revolution

frequency;

- [*] Alexander Wu Chao, et.al, Handbook of Accelerator Physics and Engineering (Second Edition), World Scientific Publishing Co. Pte. Ltd. 2013, p148
- [**] Alexander Wu Chao, et.al, Handbook of Accelerator Physics and Engineering (Second Edition), World Scientific Publishing. Co. Pte.

Estimation by Boussard Criterion

- Longitudinal RW Wake;
- Gaussian Bunch Assumption;
- Zero-Current Bunch Length (shown on slide 6);

			(1)Effective Impedance	(1)Threshold *	(2)Effective Impedance	(2)Threshold *
100 MHz RF	without harmonic cavity	Analytical impedance, no NEG	40.80 mΩ	1.30 mA	22.65 mΩ	2.33 mA
		ImpedanceWake2D, $1\mu m$ NEG	253.76 m Ω	0.21 mA	193.05 m Ω	0.27 mA
	With 3 rd harmonic cavity	Analytical impedance, no NEG	92.89 mΩ	2.99 mA	51.22 mΩ	5.43 mA
		ImpedanceWake2D, $1\mu m$ NEG	318.96 m Ω	0.87 mA	259.82 mΩ	1.07 mA
500 MHz RF	without harmonic cavity	Analytical impedance, no NEG	23.84 mΩ	0.75 mA	13.68 mΩ	1.30 mA
		ImpedanceWake2D, $1\mu m$ NEG	202.93 mΩ	0.09 mA	131.11 m Ω	0.14 mA
	With 3 rd harmonic cavity	Analytical impedance, no NEG	47.69 mΩ	1.52 mA	26.39 mΩ	2.74 mA
		ImpedanceWake2D, $1\mu m$ NEG	264.99 m Ω	0.27 mA	210.27 m Ω	0.34 mA

* Form factor F' is assumed as 1;

EUCARD²

Microwave instability

- PyHEADTAIL*
 - 1 million macroparticles, 500 slices/bunch
 - Synchrotron radiation effects have not yet been built in the code. We implemented the SR effects by the following manner**:

$$\delta \Big|_{n+1} = \frac{\Delta p}{p_0} \Big|_{n+1} = \delta \Big|_n \cdot e^{-\frac{2T_0}{\tau_E}} - \frac{U_0}{\beta^2 E_0} + rand \cdot \sigma_\delta \cdot \sqrt{3 \cdot \left(1 - e^{-\frac{4T_0}{\tau_E}}\right)}$$

Radiation damping Average energy loss per turn Quantum excitation

- mbtrack***
 - 5×10^4 macroparticles, 80 slices/bunch
 - Synchrotron radiation is included in the code
- [*] CERN PyHEADTAIL simulation code for simulation of multi-particle beam dynamics and collective effects
- [**] Andreas Streun, PhD Thesis, 1992
- [***] R. Nagaoka, et.al, Studies of Collective Effects in SOLEIL and DIAMOND Using the Multiparticle Tracking Codes sbtrack and mbtrack, FR5RFP046, Proceedings of PAC09, Vancouver, BC, Canada, 2009; Galina Skripka, et.al, Simultaneous computation of intrabunch and interbunch collective beam motions in storage rings, Nuclear Instruments and Methods in Physics Research Section A, 806 (2016), 221-230.

First Study and Questions of Microwave Instability

			Boussard Criterion *		PyHEADTAIL**	mbtrack**
			(1)	(2)		
100 MHz RF	without harmonic cavity	Analytical wake, no NEG	1.30 mA	2.33 mA	5.0 mA	33.3 mA
		ImpedanceWake2D, no NEG			5.0 mA	
		ImpedanceWake2D, $1\mu m$ NEG	0.21 mA	0.27 mA	0.33 mA	
	With 3 rd harmonic cavity	Analytical wake, no NEG	2.99 mA	5.43 mA	50.0 mA	
		ImpedanceWake2D, no NEG			66.7 mA	
		ImpedanceWake2D, $1 \ \mu m$ NEG	0.87 mA	1.07 mA	10.0 mA	
500 MHz RF	without harmonic cavity	Analytical wake, no NEG	0.75 mA	1.30 mA	0.67 mA	15.0 mA
		ImpedanceWake2D, no NEG			0.67 mA	
		ImpedanceWake2D, $1 \ \mu m$ NEG	0.09 mA	0.14 mA	0.67 mA	
	With 3 rd harmonic cavity	Analytical wake, no NEG	1.52 mA	2.74 mA	16.7 mA	
		ImpedanceWake2D, no NEG			16.7 mA	
		ImpedanceWake2D, $1 \ \mu m$ NEG	0.27 mA	0.34 mA	0.83 mA	

* Form factor F' is assumed as 1;

** Threshold criterion: $\sigma_{\delta} > 1.01 \sigma_{\delta-zero-current}$; above mentioned settings are used.

First Study and Questions of Microwave Instability

• Questions:

- Our estimations by Boussard Criterion show lower threshold than the results we obtained from the simulation codes PyHEADTAIL and *mbtrack*;
- We don't understand some results from our simulation by PyHEADTAIL.
- PyHEADTAIL and *mbtrack* give different thresholds;

We keep doing the comparison...

- PyHEADTAIL: 1 × 10⁶ macroparticles, 500 [bins/bunch];
- *mbtrack*: **5** × **10**⁴ macroparticles, **80** [bins/bunch];
- Only Longitudinal Resistive-Wall Wake Function is included;
 - PyHEADTAIL: imported RW wake, calculated by ImpedanceWake2D;
 - *mbtrack*: built-in model, calculated by *mbtrack*;
- RF 500 MHz, round copper chamber without NEG, inner radius 10 [mm];
- Synchrotron radiation damping time is ~ 6.63 [ms];
- 50000 turns (~7 damping time) in total;
- Both sigma_z and sigma_dp are average values of the last 10000 turns.

Wake Potential Calculation in Time Domain

Time-Domain Convolution

Wake Potential Calculation in Time Domain

Time-Domain Convolution

Wake Potential Calculation in Time Domain

Summary & Discussion

- We calculated the **longitudinal resistive-wall wake function** in the cases **with-** and **without- NEG coating** for SLS-2 ring.
 - Cu chamber \rightarrow analytical formula and ImpedanceWake2D code;
 - NEG-coated chamber → ImpedanceWake2D code;
- We calculated the threshold of microwave instability induced by longitudinal resistive-wall wake field using analytical method (Boussard Criterion), PyHEADTAIL and mbtrack.
 - different RF frequencies (100 MHz, 500 MHz);
 - with or without third harmonic cavities (only PyHEADTAIL);
- Questions and on-going studies:
 - Is fully NEG-coated chamber rolled out for SLS-2?
 - 100 MHz or 500 MHz?
 - Multi-bunch effects!
 - Questions to simulation:
 - Convolution in PyHEADTAIL? time-domain convolution
 - Model of short-range longitudinal resistive-wall wake function in *mbtrack*?

Dr. Nagaoka's team is kindly working on it.

Acknowledgement

- The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n.º290605 (PSI-FELLOW / COFUND).
- We thank people in SLS-2 team for the comments and discussions.
- We thank Eirini Koukovini-Platia, Kevin Shing Bruce Li, Adrian Oeftiger, Michael Schenk for their support and discussion on the usage of PyHEADTAIL.
- We thank Ryutaro Nagaoka, Francis Cullinan, Galina Skripka for their support and discussion on the *mbtrack* code.

Thank you very much for your attention!

Backup slides

Comparison between PyHEADTAIL and *mbtrack*

- PyHEADTAIL: **5** × **10**⁴ macroparticles, **80** [bins/bunch];
- *mbtrack*: **5** × **10**⁴ macroparticles, **80** [bins/bunch];
- Only Longitudinal Resistive-Wall Wake Function is included;
 - PyHEADTAIL: imported RW wake, calculated by *mbtrack*;
 - *mbtrack*: built-in model, calculated by *mbtrack*;
- Other conditions are kept the same.

Comparison between PyHEADTAIL and *mbtrack*

- PyHEADTAIL: **5** × **10**⁴ macroparticles, **80** [bins/bunch];
- *mbtrack*: **5** × **10**⁴ macroparticles, **80** [bins/bunch];
- Only Longitudinal Resistive-Wall Wake Function is included;
 - PyHEADTAIL: imported RW wake, calculated by *mbtrack*;
 - *mbtrack*: built-in model, calculated by *mbtrack*;
- Other conditions are kept the same.

PAUL SCHERRER INSTITUT

Comparison between PyHEADTAIL and *mbtrack*

- mbtrack:
 - In my simulation, bin size = 1.82 [ps];
- PyHEADTAIL:
 - In my simulation, longitudinal wake function is calculated by ImpedanceWake2D.
 - Bin size \approx 0.07 [ps] (initial bin size);
- Zero-Current RMS Bunch Length @ 500 MHz: $\sigma_z \approx 2.6 \ [mm] \approx 8.7 \ [ps]$

PyHEADTAIL: Different Number of Bins per Bunch

- In this simulation, longitudinal wake function is included.
- Zero-Current RMS Bunch Length @ 500 MHz: $\sigma_z \approx 2.6 \times 10^{-3} [m] \approx 8.7 [ps]$

mbtrack: Different Number of Bins per Bunch

- In this simulation, longitudinal wake function is included.
- Zero-Current RMS Bunch Length @ 500 MHz: $\sigma_z \approx 2.6 \times 10^{-3} [m] \approx 8.7 [ps]$