KATHRYN ZUREK

DARK MATTER AT COLLIDERS

LBL Berkeley

LHC AS DARK MATTER MACHINE?

LHC is a mediator machine, not a dark matter machine

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	¹] Mass limit	-	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} (\ell/(\ell v/vv)) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow g q (\ell/(\ell v/vv)) \tilde{\chi}_{1}^{0} \\ GMSB (\ell \text{ NLSP}) \\ GMSB (\tilde{\ell} \text{ NLSP}) \\ GGM (bino \text{ NLSP}) \\ GGM (mino \text{ NLSP}) \\ GGM (higgsino \text{ bino} \text{ NLSP}) \\ GGM (higgsino \text{ NLSP}) \\ GGM (higgsino \text{ NLSP}) \\ GGM (higgsino \text{ NLSP}) \\ Gravitino \text{ LSP} \end{array}$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \cdot 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 5.8 10.5	q	$\begin{array}{c c} \textbf{1.7 TeV} & m(\tilde{q}) = m(\tilde{g}) \\ \textbf{2 TeV} & any m(\tilde{q}) \\ \textbf{TeV} & any m(\tilde{q}) \\ \textbf{TeV} & m(\tilde{\tau}_1^0) = 0 \ \text{GeV} \\ \textbf{1.3 TeV} & m(\tilde{\tau}_1^0) = 0 \ \text{GeV} \\ \textbf{8 TeV} & m(\tilde{\tau}_1^0) < 200 \ \text{GeV}, m(\tilde{\tau}^{^{\times}}) = 0.5(m(\tilde{\tau}_1^0) + m(\tilde{g})) \\ \textbf{TeV} & m(\tilde{\tau}_1^0) = 0 \ \text{GeV} \\ \textbf{24 TeV} & tan\beta < 15 \\ \textbf{1.4 TeV} & tan\beta < 18 \\ \textbf{eV} & m(\tilde{\tau}_1^0) > 50 \ \text{GeV} \\ m(\tilde{\tau}_1^0) > 50 \ \text{GeV} \\ m(\tilde{\tau}_1^0) > 50 \ \text{GeV} \\ m(\tilde{\tau}_1^0) > 220 \ \text{GeV} \\ m(\tilde{\tau}_1^0) > 10^{-4} \ \text{eV} \\ \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ğ med.	$\widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{+}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1		2 TeV m(k 1)<600 GeV TeV m(k 1)<350 GeV 1.34 TeV m(k 1)<300 GeV 1.3 TeV m(k 1)<300 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{\tilde{v}}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t \tilde{\tilde{x}}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b \tilde{\tilde{v}}_{1}^{+} \\ \tilde{t}_{1}\tilde{\tau}_{1}(\text{light}), \tilde{t}_{1} \rightarrow W b \tilde{\tilde{v}}_{1}^{0} \\ \tilde{t}_{1}\tilde{\tau}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t \tilde{\tilde{v}}_{1}^{0} \\ \tilde{t}_{1}\tilde{\tau}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t \tilde{\tilde{v}}_{1}^{0} \\ \tilde{t}_{1}\tilde{\tau}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t \tilde{\tilde{v}}_{1}^{0} \\ \tilde{t}_{1}\tilde{\tau}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t \tilde{\tilde{v}}_{1}^{0} \\ \tilde{t}_{1}\tilde{\tau}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t \tilde{\tilde{v}}_{1}^{0} \\ \tilde{t}_{1}\tilde{\tau}_{1}, \tilde{t}_{1} \rightarrow c \tilde{\tilde{v}}_{1}^{0} \\ \tilde{t}_{1}\tilde{\tau}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ti 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} m(\tilde{\tilde{r}}_{1}^{0}){<}90~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}2~m(\tilde{\tilde{r}}_{1}^{0}) \\ m(\tilde{\tilde{r}}_{1}^{0}){=}55~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}m(\tilde{\epsilon}_{1}){-}m(W){-}50~\text{GeV},~m(\tilde{\epsilon}_{1}){<}{<}m(\tilde{\tilde{\epsilon}}_{1}^{0}) \\ m(\tilde{\tilde{r}}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}150~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}150~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}150~\text{GeV} \\ m(\tilde{\tilde{r}}_{1}^{0}){=}150~\text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-037 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array}$	2 e.μ 2 e.μ 2 τ 3 e.μ 3 e.μ 1 e.μ	0 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\bar{\mathfrak{k}}_{1}^{0}) \!=\! 0 \; \text{GeV} \\ m(\bar{\mathfrak{k}}_{1}^{0}) \!=\! 0 \; \text{GeV}, \; m(\bar{\ell},\bar{\nu}) \!=\! 0.5(m(\tilde{\ell}_{1}^{+}) \!+\! m(\bar{\ell}_{1}^{0})) \\ m(\bar{\mathfrak{k}}_{1}^{0}) \!=\! 0 \; \text{GeV}, \; m(\bar{\tau},\bar{\nu}) \!=\! 0.5(m(\bar{\ell}_{1}^{+}) \!+\! m(\bar{\ell}_{1}^{0})) \\ m(\bar{\mathfrak{k}}_{1}^{+}) \!=\! m(\bar{\mathfrak{k}}_{2}^{0}), \; m(\bar{\ell},\bar{\nu}) \!=\! 0, \; m(\bar{\ell},\bar{\nu}) \!=\! 0.5(m(\bar{\ell}_{1}^{+}) \!+\! m(\bar{\ell}_{1}^{0})) \\ m(\bar{\mathfrak{k}}_{1}^{+}) \!=\! m(\bar{\mathfrak{k}}_{2}^{0}), \; m(\bar{\ell}_{1}^{0}) \!=\! 0, \; sleptons \; decoupled \\ m(\bar{\mathfrak{k}}_{1}^{+}) \!=\! m(\bar{\mathfrak{k}}_{2}^{0}), \; m(\bar{\mathfrak{k}}_{2}^{0}) \!=\! 0, \; sleptons \; decoupled \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_{+}\tau(e$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 (μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	x̂₁ 270 GeV 832 GeV ŝ 832 GeV 832 GeV x̂₁ 475 GeV 832 GeV x̂₁ 230 GeV 1.0 Te	$\begin{array}{l} m(\tilde{k}_1^{a}){=}m(\tilde{k}_1^{0}){=}160 \mbox{ MeV}, \ r(\tilde{k}_1^{a}){=}0.2 \mbox{ ns} \\ m(\tilde{k}_1^{0}){=}100 \mbox{ GeV}, \ 10 \ \mu s{<}r(\tilde{g}){<}1000 \mbox{ s} \\ 10{<}tan\beta{<}50 \\ 0.4{<}r(\tilde{k}_1^{0}){<}2 \mbox{ ns} \\ 1.5{<}cr{<}156 \mbox{ mm}, \mbox{ BR}(\mu){=}1, \ m(\tilde{k}_1^{0}){=}108 \mbox{ GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp {\rightarrow} \tilde{v}_{\tau} + X, \\ \tilde{v}_{\tau} {\rightarrow} e + \mu \\ LFV \ pp {\rightarrow} \tilde{v}_{\tau} + X, \\ \tilde{v}_{\tau} {\rightarrow} e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \\ \tilde{\chi}_{1}^{+} {\rightarrow} W \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \\ \tilde{\chi}_{1}^{+} {\rightarrow} W \\ \tilde{\chi}_{1}^{0}, \\ \tilde{\chi}_{1}^{0} {\rightarrow} \tau \tau \\ \tilde{v}_{e}, \\ e \tau \\ \tilde{v}_{\tau} \\ \tilde{g} {\rightarrow} q q q \\ \\ \tilde{g} {\rightarrow} \\ \tilde{t}_{1}, \\ \tilde{t}_{1}^{-} \\ \tilde{t}_{1}^{-} \\ bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	7 jets - - 6-7 jets 0-3 b	Yes Yes Yes Yes	4.6 4.7 20.7 20.7 20.3 20.7	\hat{P}_r 1.1 $\hat{q}_r \hat{g}$ 1.1 $\hat{q}_r \hat{g}$ 1.1 $\hat{\chi}_1^{\pm}$ 760 GeV $\hat{\chi}_1^{\pm}$ 350 GeV \hat{g} 916 GeV \hat{g} 880 GeV	1.61 TeV λ'_{313} =0.10, λ_{132} =0.05 TeV λ'_{313} =0.10, $\lambda_{1(2)33}$ =0.05 2 TeV m(\bar{q})=m(\bar{g}), $c\tau_{LSP}$ <1 mm m($\bar{\chi}^0_1$)>300 GeV, λ_{121} >0 m($\bar{\chi}^0_1$)>80 GeV, λ_{133} >0 BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 1 b mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 800 GeV M* scale 704 GeV	incl. limit from 1110.2693 m(g)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	√s = 8 TeV artial data	$\sqrt{s} = 0$ full of	8 TeV data		10 ⁻¹	1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Strong constraints on strongly interacting particles

> 1 TeV

Weak constraints on weakly interacting particles

> few hundred GeV

Direct/Indirect detection does well here

 $\sigma_n \sim 10^{-39}~{
m cm}^2$ Scattering via the Z boson

$$\sigma_n \sim 10^{-45-46} \ \mathrm{cm}^2$$

Scattering via the Higgs boson

Scattering cross-sections so large that even 1-loop suppressed processes detectable

Hill and Solon

Scattering cross-sections so large that even 1-loop suppressed processes detectable

Berlin, Robertson, Solon, KZ 1511.05964

Electroweak triplet has a big annihilation rate to photons

Ovanesyan, Slatyer, Stewart

COLLIDER AS DM MACHINE

COMPARE LHC TO DIRECT DETECTION CONSTRAINTS?

- Important theory dependence in these plots!
- Inappropriate use of higher dimension operators
- Failure to take into account direct searches for mediator

INAPPROPRIATE USE OF HIGHER DIMENSION OPERATORS

An, Ji, Wang

DIRECT DETECTION MORE EFFECTIVE WITH LIGHT MEDIATORS

And light dark matter.

See talk later on direct detection of sub-GeV dark matter

 6^{g}

T-CHANNEL MODEL

- MDM = 10 GeV
 Compare monojet item MET traditional SUSY search: dijet+MET
- True constraints are stronger or weaker than EFT constraint
- EFT limit not reached until 2000 mediator 2 TeV or heavier

jets+MET

jets+MET

T-CHANNEL MODEL

OTHER PARTICLES THAN JETS

- Not restricted to jets as Initial State Radiation
- Earliest studies used Z bosons because cleaner signature

Z/W/Higgs/photon

Petriello, Quackenbush, KZ 0803.4005 Gershtein, Petriello, Quackenbush, KZ 0809.2849

CONSTRAINTS TOO WEAK TO JUSTIFY EFT APPROACH

 $\Lambda = m_M / \sqrt{g_q g_\chi}$

Carpenter et al, 1212.3352

CONSTRAINTS TOO WEAK TO JUSTIFY EFT APPROACH

$$D5(u=-d) \quad \frac{1}{M^2} (\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d) (\bar{\chi}\sigma^{\mu\nu}\chi) \to \frac{H^{\dagger}\tau^a H}{\Lambda^4} (\bar{q}_L \tau^a \gamma^{\mu}q_L) (\bar{\chi}\sigma^{\mu\nu}\chi)$$

$$D9 \quad \frac{1}{M^2} (\bar{q}\sigma^{\mu\nu}q) (\bar{\chi}\sigma^{\mu\nu}\chi) \to \frac{v}{\Lambda^3} (\bar{q}_L \sigma^{\mu\nu}q_R) (\bar{\chi}\sigma^{\mu\nu}\chi)$$

Liew, Papucci, Vichi, KZ

EFFECTIVE PROBE IN INELASTIC MODELS

MONO-B

Even here traditional
 SUSY searches are more powerful

q

 χ

Z

 χ

 \tilde{q}

 χ'

χ h , Even here tradition a χ SUSY searches are more powerful

 χ

 χ'

 \tilde{q}

q

Moral

- Keep an eye on direct searches for SUSY as well as searches for the mediators (e.g. dijets, dileptons, dijets + MET, Z + jets + MET, etc)
- Monojet is generally not a new physics discovery mode; helpful later on in reconstructing the Lagrangian of the new physics, including coupling to DM

HIDDEN SECTOR DARK MATTER AT LHC

- Gives rise to extended decay chains at LHC
- LSP is not stable!
- Reduced MET, additional jets

Hidden Valley, Strassler, KZ 2006

HIDDEN SECTOR DARK MATTER AT LHC

- Gives rise to extended decay chains at LHC
- LSP is not stable!
- Reduced MET, additional jets
- Weakened constraints

$$W_{\rm ADM} = X\ell H, \quad \frac{Xu_i^c d_j^c d_k^c}{M_{ijk}}, \quad \frac{Xq_i \ell_j d_k^c}{M_{ijk}}, \quad \frac{X\ell_i \ell_j e_k^c}{M_{ijk}}$$

(a) 0 lepton analysis for $m_{\chi_1^0} = 100 \text{ GeV}$

arXiv:1310.2617

SEARCHING FOR DM AT COLLIDERS

- LHC is strongest probe for weak scale mediators decaying dominant visibly, especially if those states carry color
- If there is DM at the bottom of the decay chain, one has an excellent chance of seeing it. But in these cases it is usually accompanied by additional *structure*. (i.e. not mono-anything.)
- Direct and indirect detection experiments are excellent intensity experiments, and will cover *much* of the parameter space for EW dark matter

IT'S AN IMPORTANT YEAR FOR PHYSICS BSM AT LHC

