Late Kinetic Decoupling from Dark Matter - Dark Radiation Scattering

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Based on 1603.04884, with T.Bringmann, J. Kersten and P. Walia

DSU Bergen, July 27, 2016

Motivation

- 1 Kinetic Decoupling of Dark Matter
- 2 Late Kinetic Decoupling of Dark Matter
 General Considerations
 Examples of Models
 Conclusion

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

- Small-scale problems in ΛCDM
- Dark acoustic oscillations can wash out structure on small scales. May address *missing satellite problem*
- SIDM can be relevant for other small-scale problems

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Kinetic Decoupling of Dark Matter

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Kinetic equilibrium between DM and DR

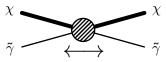
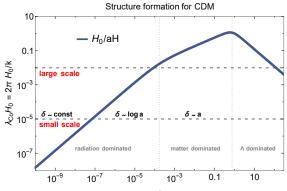
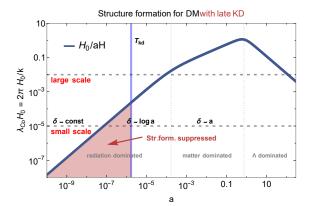


Figure 1: Processes that maintain kinetic equilibrium

- $\chi = \mathsf{Dark} \mathsf{Matter}$
- $\tilde{\gamma} = \text{Rel.}$ heat bath particle (SM or DR)
- Kinetic eq. $\rightarrow T_{\chi} = T_{\tilde{\gamma}}$, $(T_{\chi} \equiv \frac{2}{3} \langle p_{\chi}^2 / 2m_{\chi} \rangle)$
- As DM interacts with γ
 . The resulting pressure washes out DM overdensities


Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo


Kinetic decoupling of DM

- Scattering rate: $\Gamma \approx v \sigma n_{\tilde{\gamma}}$
- Kinetic decoupling at $\Gamma \sim N_{coll} H$
- $I N_{coll} \approx m_{\chi}/T_{\rm kd}$
- Typical WIMP candidates: $T_{\rm kd} \gtrsim {
 m MeV}$
- KD decides the size of the smallest DM structures today

$$M_{\rm cut} \approx \frac{4\pi}{3} \frac{\rho_{\chi}(T_{\rm kd})}{H(T_{\rm kd})^3} \approx 7 \cdot 10^{10} M_{\odot} \left(\frac{T_{\rm kd}}{100 eV}\right)^{-3}$$

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Late Kinetic Decoupling of Dark Matter

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Previous work

DM coupling to (sterile-) neutrinos:

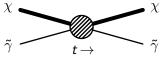
- Aarssen, Bringmann, and Pfrommer, 2012
- Shoemaker, 2013
- Bringmann, Hasenkamp, and Kersten, 2014
- Dasgupta and Kopp, 2014
- Ko and Tang, 2014
- Cherry, Friedland and Shoemaker, 2014
- Bertoni et al., 2014
- Binder et al., 2016

• Other work on late KD:

- Chu and Dasgupta, 2014
- Vogelsberger et al., 2015 (ETHOS)
- Cyr-Racine et al., 2015 (ETHOS)
 - Tang, 2016

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

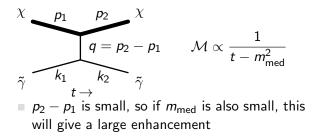
General Considerations


Our goal

- Classify "all" models that result in late kinetic decoupling ($T_{\rm kd} \sim {\rm keV}$)
- Include constraints on model properties:
 - Get correct relic density (at least not deplete the relic density)
 - $\begin{array}{l} \rightarrow \alpha/m_{\chi} \lesssim 10^{-5} {\rm GeV^{-1}} \\ \hline \qquad {\rm If } \ \tilde{\gamma} = {\rm Extra \ radiation} \ \rightarrow \Delta N_{\rm eff} \rightarrow \\ {\rm constraint \ on } \ \xi = T_{\tilde{\gamma}}/T \end{array}$
 - Not too much self interaction, $\chi\chi \to \chi\chi$ (a little bit is good though!)

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

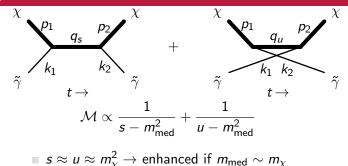
General Considerations



- In order to get a later kinetic decoupling (i.e. $T_{\rm kd} \sim {\rm keV}$) we typically want to enhance the scattering amplitude
- One way to do this, is to put a virtual particle almost "on-shell"
- Can be done in the *t* or the *s*/*u*-channels

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

General Considerations


t-channel Enhancement

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

General Considerations

s/u-channel Enhancement

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslc

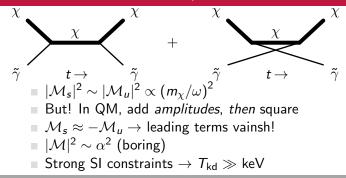
Examples of Models

Examples of Models

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Examples of Models

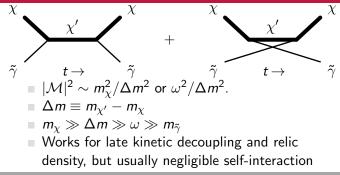
Simplest Possible ModelTM


Four point vertex with scalar χ and scalar $\tilde{\gamma}$

- Can result in late kinetic decoupling, but relic density depletion $\rightarrow m_{\chi} \lesssim 1$ MeV
- How small mass we need also depends strongly on $\xi = T_{\tilde{\gamma}}/T$
- Free-streaming important for $m_\chi \ll {
 m MeV}$

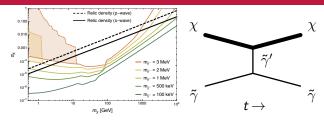
Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Examples of Models


2-Particle Models in the s/u-channels

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Examples of Models


3-Particle Models in the s/u-channels

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Examples of Models

3-Particle Models in t-channel

- New light mediator particle γ̃'
- $m_{\chi} \gg m_{ ilde{\gamma}'} \gg \omega \gg m_{ ilde{\gamma}}$
- Late kinetic decoupling + SI + RD !

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Conclusion

- Dark acoustic oscillations from LKD can possibly address missing satellites problem
- LKD can be achieved by putting a virtual particle "on-shell", or reducing m_{χ}
- Self-interaction constraints severely restrict $\chi \chi \tilde{\gamma}$ coupling
- LKD simplified model classification: Significantly extended the list of options discussed so far in the literature
- More detailed study still needed

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo

Thank you !

Håvard Tveit Ihle, Institute of Theoratical Astrophysics, University of Oslo