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Turnaround radius with Hawking mass in GR

Turnaround radius with Hawking mass

Part of a larger program aiming at applying quasilocal mass in
cosmology. Already used to test whether Newtonian N-Body
simulations of large scale structures are reliable (VF, Prain &
Lapierre-Léonard, PRD 2015).

Consider present accelerated era of the universe and the
largest bound objects in the sky. The turnaround radius was
suggested as a possible way to test dark energy (Roupas et al.
2014, PRD 89, 083002; Pavlidou & Tomaras 2014, JCAP 09, 020; Pavlidou,
Tetradis, Tomaras 2014, JCAP 05, 017)

but the concept of TR is older (Souriau 1981; Stuchlik 1983; Stuchlik
et al. 1989-2005; Mizony & Lachiéze-Rey 2005; Blau & Rollier 2008, )
Consider an accelerated FLRW universe with one spherical
inhomogeneity; massive test particles with zero radial initial
velocity cannot collapse if they are outside a critical radius R.
(turnaround radius), but can only expand.



Turnaround radius with Hawking mass in GR

For R < R, outer layers of dust reach zero radial acceleration
and collapse under self-gravity. If you cross outside R in
geodesic motion, you will never fall back.

TR studied in Schwarzschild-de Sitter, Lemaitre-Tolman-Bondi,
and McVittie spacetimes.

SdS (heuristic):

ds? = — (1 - 2M _ H2R2) g12 + + R2d02
R
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Turnaround radius with Hawking mass in GR

Radial timelike geodesics obey R(r) = (R® — RS) H?/R?
LTB models (dust) Pavlidou, Tetradis & Tomaras 2014 have

R'(tr)

2 _ 42
ds® = —dt +1+f(r)

ar® + RP(t, r)dQt,

with ' = d/dr, f(r) related to initial density profile. Radial
timelike geodesics obey

GM(r) AR

A= T3

o ‘ 1/3
and the turnaround radius is A = (%) where
M(r) = fOR dR R?p Lemaitre mass.
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More realistic: post-FLRW space (1st order)
ds? = & (n) |~ (1+20) dn? + (1 — 29) (dr® + rPd0%,) ) |

Pavlidou, Tetradis & Tomaras find timelike radial geodesics obey

. GM(r) & GM()
R:_?(pDE‘i‘SPDE)R_ /2 :5_ [=2

where it is suggested (but not written down)

R
./\/l(l’) = /O daR R2Ptotal

— R; = SM v
c 4(3w + 1)mppe

(reduces to SdS expression for w = —1).
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Questions (not answered, nor posed):
@ gauge-invariance;

@ what is the “mass in a sphere of radius R”? Should it
include ppe? If not, why? Should it include only pperturbation?
Why?
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Use Hawking-Hayward quasilocal energy (reduces to
Misner-Sharp-Hernandez mass in spherical symmetry) and a
new splitting of it. Assumptions:

@ GRis valid

@ 1st order in metric perturbations; spherical symmetry
¢ = ¢(r) (consequences of ¢ # ¢(r) discussed in Barrow &
Saich 1993, MNRAS 262, 717)

@ FLRW background, spatially flat, accelerated by DE with
pDE, PoE = WppE
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Physical mass is the Hawking quasilocal energy’
Idea: total mass in a region bounded by a surface S is
measured by behaviour of null geodesics at S

S = closed spacelike orientable 2-surface
R = induced Ricci scalar on S
f(+) = expansions of outgoing/ingoing null
geodesic congruences from S

S.W. Hawking 1968, J. Math. Phys. 9, 568; S.A. Hayward 1994, Phys.
Rev. D 49, 831
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General perturbations of FLRW

a;t) = shear tensors of null congruences
w? = projection on S of the commutator of null
normal vectors to S (anholonomicity)

M = volume 2-form on S
=areaof S

V167T/ <R+9 9( )

o

)~ 2w4 wa>
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Compute for

a8 = (n) [ (1 +20n) dif + (1 = 26n) (dr? + r2d0 )|

post-Newtonian

and attempt to decompose as My = (local) +(cosmological)
to first order (general perts.)
Conformal factor gz, — Q2 gap, Q = a(n)
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Final result (with two methods) is

iy = AQ, Q) R® Q,zn
V=S T 2
N——

local cosmological

Prain, Vitagliano, VF & Lapierre-Léonard, Class. Quantum Grav. 33, 145008
Now adapt to spherical symmetry —
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2 03 2R3
5 (1—¢)~ma+ >

with m = [ @®X V2¢ Newtonian mass ~ comoving length scale
ma ~ physical length scale. Criterion for a system on the verge
of breaking down is now

2 03 .
local part ma= " cosmological part —

My = ma+

2ma\ /3
Re(t) = (Hg)
2 3ma 1/3 ;
Now H2 — 8 Gppe/3 — Re(t) = (£22) " and, f

1/3 3w+4
w = const., R = (%) a s

Compare with Pavlidou, Tetradis & Tomaras

1/3
Re (3w+1)/w1 e
R(PTT) - 2 ~ ~
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but now
@ no ambiguities in “mass inside a sphere of radius R;”;
@ rigorous derivation of turnaround radius R
@ important if you want to constrain w
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Can express R; = R¢(z) and invert to obtain

[ =n|(35) A

If w = const. reduces to

| (3m2)" o

In(z+1)

w(z)=-1+

constrain w if ma and R are known.
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Turnaround radius in ST gravity

ds? = &(n) |- (1+2v) dif + (1 - 20) (dr? + 2d0%) | |

o = ¢(r),v = 1(r). Massive test particles follow timelike
geodesics

d a
di + rbCU ut = O,

uc:u® = —1 and the geodesic eq. give
0
au” + a"( 02 2¢O + & ( —2¢p—2¢)(u")?=0

—+¢/(u0)2+%u0u1 —¢’(u1)2:O



Turnaround radius in scalar-tensor gravity

Areal radius is R(t,r) = ary/1 —2¢ ~ ar (1 — ¢), further
manipulation yields

ﬂ— ér—i—@.i_Li U; (1 —¢)
arz au®  aud dr \ uo
Criterion locating the (unique) turnaround radius is
d?R/dt? = 0, which becomes

/
ér—gz
a

0



Turnaround radius in scalar-tensor gravity

In terms of the areal turnaround radius,
Rc = a(t)re [1 — o(re)]
or, using the gravitational slip £ = (¢ — ¢) /¢,

aRc(1+ ¢c) — dp (1 — &) + dcke =0
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Conclusions

@ Turnaround radius is an opportunity to test gravity and the
ACDM model.

@ Split My for spherical perturbations of FLRW — rigorous
derivation of R., small correction, much needed
clarification of “mass”.

@ In modified gravity, no accepted My, use criterion R = 0 —
eq. for R¢ in ST gravity.

@ Is it important? Astronomers claim that the upper bound on
R: in GR is exceeded by far in galaxy group NGC 5353/4

(Lee et al. 2015, Astrophys. J. 815, 43; Lee, arXiv:1603.06672).
Wait and see!
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