Cosmological implication of the NMSSM domain wall decay

Osamu Seto (Hokkaido Univ.)

With Hironori Hattori, Tatsuo Kobayashi and Naoya Omoto (Hokkaido Univ.)

Ref: Phys. Rev. D 92, 103518 (2015)

§ Introduction

§ § next-to-minimal supersymmetric standard model (NMSSM)

- MSSM suffers from so-called μ-problem.
- A singlet extended model, NMSSM, with Z3 parity solves the μ-problem. [Fayet (1975), Nilles et al (1983), ...]

$$W_{\text{Higgs}} = \lambda S H_u H_d + \frac{\kappa}{3} S^3$$

- This Z₃ parity is problematic for cosmology.
- Cosmological domain wall problem [Zeldovich et al (1974)]

§ § next-to-minimal supersymmetric standard model (NMSSM)

- Cosmological domain wall problem [Abel et al (1995)]
- Tiny explicit breaking of Z₃ is favoured from cosmology

Free from DW problem

Gravitational wave generation [Kadota et al (2015)]

Models, e.g., Panagiotakopoulos and Tamvakis (1999), Hamaguchi et al (2012)

§ § next-to-minimal supersymmetric standard model (NMSSM)

• Tiny explicit breaking of Z₃ has no effect on Physics Reports 496 (2010) 1-77

phenomenology?

The Next-to-Minimal Supersymmetric Standard Model

Ulrich Ellwanger a,*, Cyril Hugonie b, Ana M. Teixeira a,c,1

^a LPT. UMR 8627. CNRS, Université de Paris-Sud, 91405 Orsay, France

^b LPTA, UMR 5207, CNRS/IN2P3, Université de Montpellier II, 34095 Montpellier, France

^c CFTP, Departamento de Física, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

Subsequently solutions of this problem hav \mathbb{Z}_3 -symmetry breaking non-renormalisable inter

ABSTRACT

Symmetries, such that \mathbb{Z}_3 -symmetry breaking rev. Accepted 25 June 2010

Article history:

Supersymmetric Standard Model: the Higgs sector including radiative corrections and the Supersymmetric Standard Model: the Higgs sector including radiative corrections and the

but with very small coefficients. These \mathbb{Z}_3 -symmetry breaking terms can still solve the domain wall problem of the otherwise \mathbb{Z}_3 -invariant NMSSM, without having a visible impact on its phenomenology.

§ Assumed cosmic history

- Primordial inflation
- Reheating
- Electroweak phase transition with domain wall formation
- Domain wall network evolution
- Domain wall decay with entropy production [Kawasaki and Takahashi (2005)]
- Big bang nucleosynthesis

•

§ Domain wall evolution

• Domain wall networks relax so-called scaling Solution [Press et al (1989), Hindmarsh (2003), Leite et al (2011, 2013), Hiramatsu et al (2014), ...]

$$\rho_{\rm DW} \simeq \sigma H$$

- The tension $\sigma \simeq \frac{16}{3\sqrt{3}} v_s^2 \sqrt{\kappa A_\kappa v_s} = \frac{16}{3\sqrt{3}} \frac{\mu^2}{\lambda^2} \sqrt{\frac{\kappa}{\lambda} A_\kappa \mu}$
- At $H_{\rm eq} \simeq \frac{\sigma}{3M_P^2}$ the energy density of domain wall becomes comparable to that of background radiation.

§ Domain wall evolution

• Thermal history after inflation

• Entropy ratio before to after DW decay

- Ratio of entropy increase Δ
- DW Decay temperature *Td*

FIG. 3 (color online). The entropy density ratio Δ of after to before domain wall decay in the radiation-dominated era to domain wall dominated era for $\lambda = \kappa = 0.01$, $T_d = 3$ MeV.

(1) Thermal WIMP relic abundance

Neutralino [Bager et al (2007)] RH sneutrino [Cerdeno et al (2009)]

(2) Axion abundance: axion window

Larger *Fa* could be allowed.

(3) LSP abundance for mirage mediation models

FIG. 4 (color online). The required branching ratio contour to keep $\Omega_{\rm LSP}h^2=0.1$ in the mirage mediation scenario for $\lambda=\kappa=0.01,~T_d=3$ MeV, $m_{\rm LSP}=100$ GeV, $m_{\rm moduli}=1000$ TeV. Above each curve, the relic abundance is smaller than $\Omega_{\rm LSP}h^2=0.1$.

§ Summary

• We have studied cosmological implication of unstable domain wall in the NMSSM.

• The decay of domain wall in the NMSSM may dilute cosmological unwanted relics

or

regulate dark matter relic abundance.