Dark Side of the Universe 2016 Dark Matter Searches in **Edward Diehl** ATLAS University of Michigan On behalf of the ATLAS collaboratic

Dark Matter Detection

"It takes gray matter to find dark matter"

- Direct detection
 - Nuclear recoil from DM particle interactions.
 - Exclusion limits by: PICO-2L, Xenon100, LUX, SuperCDMS, PICASSO...
- Indirect astrophysical detection
 - eg, positron excess HEAT, PAMELA, AMS
 - as WIMP-WIMP annihilation ?
 - see "Secondary Production as the origin of the CR Positron Excess" arXiv 1410.7239
- Production in colliders:
 - if DM particles weakly interact with SM
 - Search for generic decay signatures

July 28, 2016

Collider "Monotonic" Searches: Mono-X

 $\chi\chi$ escape undetected

 \Rightarrow Missing Transverse Energy (MET)

Event Signature: $qq \Rightarrow$ stuff + nothing

X=jet, γ , W,

- $\chi\chi$ cannot be directly seen
- Require $\chi\chi$ recoil against triggerable object X = W/Z, h, jet, γ , t,b
- $\chi\chi$ WIMP pairs production described by:
 - Simplified Models with initial state radiation (ISR)
 - Simplified Models with Higgs
 - Lightest stable SUSY particles
 - Effective Field Theory (EFT)

E-miss

Simplified Models

EFT not valid at large $Q^2 \Rightarrow$

Switch to Simplified Models when Effective Field Theory becomes ineffective

Z/A mediator: generic weak interaction axial-vector, vector, scalar, pseudoscalar

Benchmark: "Leptophobic Z'-like" model

Free parameters:

- M_{Z'} = mediator mass
- m_x = WIMP mass
- g_q = mediator-SM coupling
- g_x = mediator-WIMP coupling

 Γ_{min} = minimal width assumed (decays only to DM particles)

Axial vector case:
$$\Gamma_{\min} = \frac{g_{\chi}^2 m_A}{12\pi} \beta_{\chi}^3 \theta(m_A - 2m_{\chi}) + \sum_q \frac{3g_q^2 m_A}{12\pi} \beta_q^3 \theta(m_A - 2m_q) + \sum_q \frac{3g_q^2 m_A}{12\pi} \theta(m_A - 2m_q)$$

Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum arXiv:1507.00966

July 28, 2016

Analysis Strategy

- Look for a clean signature:
 - high momentum object
 - with large ET miss
- backgrounds:
 - data driven

- MC (normalized with Control Regions)
- kinematic cuts define Signal Regions
- count number of events in Signal Regions
- look for excess over SM background

MET

LHC Operations

- The LHC has worked spectacularly for the last 6 years.
- Run1: 2011-12 ~25 fb⁻¹ of pp data @ 7 & 8 TeV
- Run2: 2015-16 ~19 fb⁻¹ of pp data @ 13 TeV so far
- LHC luminosity at 1.2 x 10³⁴ cm⁻² s⁻¹, 20% over design goal!
- This talk: results from 3.2 fb⁻¹13 TeV data from 2015.

Monojet Analysis

Signal Selection

- E_{T}^{miss} trigger
- Jets recons with anti-kt R=0.4
- Primary vertex in beam spot
- E_T^{miss} > 250 GeV
- 7 signal regions to 700 GeV
- P_T (jet_{leading}) > 250 GeV $|\eta| < 2.4$
- $\Delta \phi$ (P_T^{jet} , P_T^{miss}) > 0.4 for all jets
- veto leptons (e/µ) > 20/10 GeV
- veto: > 4 jets (P_T > 30 GeV)

Backgrounds(MC+ 3 Control Regions)ProcessFraction $E_T^{miss} > 250, 700 \text{ GeV}$ $Z \rightarrow vv + \text{jets}$ 58%, 65% $W \rightarrow vl + \text{jets}$ 35%, 23% $Z/\gamma \rightarrow II + \text{jets}$ 7%, 12%dibosonnon-collision

Example Control Region : $Z \rightarrow vv + jets$ bkg: Select W ($\rightarrow \mu v$) + jets using 30 < M_T <100 GeV $m_T = \sqrt{2p_T^\ell p_T^\nu [1 - cos(\phi^\ell - \phi^\nu)]}$

 $N_{\text{signal}}^{Z(\to\nu\bar{\nu})} = (N_{W(\to\mu\nu),\text{control}}^{\text{data}} - N_{W(\to\mu\nu),\text{control}}^{\text{non}-W}) \times \frac{N_{\text{signal}}^{\text{MC}(Z(\to\nu\bar{\nu}))}}{N_{W(\to\mu\nu),\text{control}}^{\text{MC}}}$

Transfer factor from Control Region to Signal Region

Do simultaneous global fit of 7 exclusive SR+CR

July 28, 2016

Monojet Control & Signal Regions

Edward Diehl - ATLAS Dark Matter

July 28, 2016

Monojet WIMP Limits

- Relic abundance based on WMAP, Planck assumes only the specified interaction
- below relic abundance curve: DM over production
- above relic abundance curve: DM under production

July 28, 2016

Edward Diehl - ATLAS Dark Matter

Simplified Model cross section limits

expressed as Direct Detection limits

Simplified model

NOTE: Only valid for "Leptonphobic Z"

Mono γ – Next best search channel

Signals dimension-7 EFT operator (same as Mono-Z with k₁=k₂=1) arXiv 1212.3352

Signal acceptance 0.43-0.55

Event Selection

 $\begin{array}{l} \gamma \mbox{ trigger 70 GeV (99.7\% eff)} \\ \mbox{ primary vertex, } 2 \mbox{ tracks at 0.4 GeV} \\ \mbox{ Photon P_T} > 150 \mbox{ GeV} \\ \mbox{ E_T}^{miss} > 150 \mbox{ GeV leading } \gamma \mbox{ } |\eta| < 2.37 \\ \mbox{ } \Delta \varphi(\gamma, \mbox{ P_T}) > 0.4 \\ \mbox{ 0 or 1 jet P_T} > 30 \mbox{ GeV } |\eta| < 4.5 \\ \mbox{ Lepton veto} \end{array}$

Mono y Results

SR
264
295 ± 34
171 ± 29
58 ± 9
3.3 ± 0.6
15 ± 4
22 ± 18
26 ± 12
249 ± 29

Backgrounds $Z + ISR \rightarrow vv + \gamma CR$ $W + ISR \rightarrow vII + \gamma CR$ $Z \rightarrow II + \gamma CR$ Z/W+jets $tt, \gamma+jets, multijets: data driven$

3 Control Region: Invert 1 or 2 vetos \Rightarrow use to normalize the W+ γ & Z+ γ MC

Mono y Results

Mono Z/W (hadronic)

Two DM production models considered:

 F_i = field strengths for SM U(1), SU(2), SU(3) gauge groups.

Mono Z/W Results

July 28, 2016

Mono Higgs ($h \rightarrow bb, h \rightarrow \gamma\gamma, h \rightarrow 4l$) **Final states:** $\bar{\chi}$ $h \rightarrow bb + E_T^{miss}$ \bar{q} \bar{q} two b-jets + E_t^{miss} qq

ISR of Higgs is Yukawa suppressed (i.e. coupling to light quarks is small)

Model 1: Simplified... massive vector mediator w/ baryon number radiates Higgs, decays to WIMPS (also with baryon number)

specified by: g_q , g_x , $g_{Z'}$, $M_{Z'}$, M_x , mixing angle sin ϑ : SM h to baryonic H

Model 2 (2HDM): vector mediator (Z') + two-Higgs-doublet (five Higgses) Z' \rightarrow A^o + regular Higgs h, A^o $\rightarrow \chi\chi$ (BR \sim 1) specified by: g_q, g_X, M_{Z'}, M_A, M_X h – H mixing angle α & tan β assumes alignment limit $\rightarrow \cos(\alpha$ - β)=0

Mono Higgs (h→bb)

Event Selection

- $E_{T^{miss}}$ trigger > 80 GeV
- E_T^{miss} > 150 GeV , P_T^{miss} > 30 GeV central region, lepton veto
- resolved region: $E_{T^{miss}} < 500 \text{ GeV} \Rightarrow \text{two central jets}, R = 0.4, 2 \text{ b-tag}$
- merged region: $E_{T^{miss}} > 500 \text{ GeV} \Rightarrow$ one large R jet (w/ btag+ 2 track jets)
- $\Delta \phi$ (E_T^{miss} , P_T^{miss}) < $\pi/2 \Rightarrow$ suppress fake E_{Tt}^{miss}
- $\Delta \phi$ (E_T^{miss}, h) > 120° $\Delta \phi$ (jet1, jet2) < 140° } suppress QCD di-jets
- B-tag eff=70%, mis-ID=12%

$E_{\mathrm{T}}^{\mathrm{miss}}$		Merged	
(\overline{GeV})	150 - 200	>500	
Z + jets	259 ± 27	3.80 ± 0.44	
W + jets	95 ± 28	2.48 ± 0.71	
$t\bar{t}$ & Single top	1444 ± 44	4.83 ± 0.88	
$\operatorname{Multijet}$	21 ± 10	—	
Diboson	17.8 ± 1.6	1.20 ± 0.12	
SMVh	2.8 ± 1.3	0.15 ± 0.08	
Tot. Bkg.	1840 ± 33	12.5 ± 1.3	
Data	1830	20	
Exp. Signal	80 ± 8	149 ± 34	

do profile fit to M_{inv} in Higgs window for all CR, SR

Signal Event $E_{T}^{miss} = 213 \text{ GeV}$ M_{ii} =120 GeV

Mono Higgs (h→bb)

Mono Higgs Results (h→bb)

Mono Higgs Results ($h \rightarrow \gamma \gamma, h \rightarrow 4I$)

- $h \rightarrow \gamma \gamma$ small BR (0.002), but clean signal
- Search for peak at $m_{\gamma\gamma} \sim m_h$
- No excess \square set limits on $\sigma(pp \square h\chi\chi)$

 $h \rightarrow 4I$ Very clean but low BR

- Search for excess high MET events
- No excess \Box set limits on $\sigma(DD \Box hx\chi)$

ATLAS Mono-X Results

"X"	Run1	Run2
>= jet	EPJC 75 (2015) 299 (hep-ex 1502.01518)	Submitted to PRD (hep-ex 1604.07773)
Photon	PRD 91(2015)012008 (hep-ex 1411.1559)	JHEP06(2016)059 (hep-ex 1604.01306)
W→Iv	JHEP 09 (2014) 037 (hep-ex 1407.7494)	
Z→II	PRD 90 (2014) 012004 (hep-ex 1404.0051)	
W or Z (qq)	PRL112 (2014) 041802 (hep-ex 1309.4017)	ATLAS-CONF-2015-080
t/b jet	EPJC75 (2015) 92 (hep-ex 1410.4031)	
H→bb	ATLAS PRD 93 072007 (2016) (hep-ex 1510.06218)	ATLAS-CONF-2016-019
Н→үү	PRL 115 (2015) 131801 (hep-ex 1506.01081)	ATLAS-CONF-2016-011
H→4I		ATLAS-CONF-2015-059

2016 will provide much more data to extend these analyses...

First ATLAS searches at 13 TeV 3.2 fb⁻¹ for Dark Matter signatures with mono-jets, -photon, -higgs, -W/Z final states **No excesses in Signal Regions** \Rightarrow **compatible with Standard Model** Limits are set for Dark Matter Forum benchmark simplified models

Edward Diehl – ATLAS Dark Matter

Dijet Resonance Searches

ATLAS Experiment

Muon Spectrometer:

- 0.5-1T toroidal magnetic field
- Resistive Plate Chambers & Thin Gap Chambers for trigger
- Monitored Drift tubes & Cathode Strip Chambers measure sagitta
- |η| < 2.5

Inner Detector:

- 2T solenoid
- Silicon pixel & strip detectors
- Transition radiation tracker
- Interaction vertex
- |η| < 2.5
- Several hundred tracks
 per collision

Calorimeters:

- Liquid argon electromagnetic calorimeter
- Tile hadronic calorimeter
- |η| < 4.9
- 9.7 interaction lengths at $\eta=0$

	Detector component	Required resolution	η coverage	
			Measurement	Trigger
`	Tracking	$\sigma_{p_T}/p_T = 0.05\% p_T \oplus 1\%$	±2.5	
ו	EM calorimetry	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	±3.2	±2.5
	Hadronic calorimetry (jets)			
	barrel and end-cap	$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$	±3.2	±3.2
	forward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$
	Muon spectrometer	$\sigma_{p_T}/p_T = 10\%$ at $p_T = 1$ TeV	±2.7	±2.4