A global fit of the gamma-ray galactic center excess within the scalar Higgs portal model [A. Cuoco, B. Eiteneuer, JH, M. Krämer; JCAP 1606 (2016), 1603.08228]

Jan Heisig (RWTH Aachen)

July 25-29, Bergen, Norway

 \Rightarrow Excess over the known foregrounds in *Fermi*-LAT data

Millisecond Pulsars

 \Rightarrow Excess over the known foregrounds in *I*

Millisecond Pulsars

WIMP Dark Matter

⇒ Excess over the known foregrounds in Fermi-LAT data

 $m_{\chi}[\text{GeV}]$

Fermi GeV Galactic Center Excess

 \Rightarrow Excess over the known foregrounds in *Fermi*-LAT data

This work:

 Very simple Dark Matter model (singlet scalar Higgs portal)

- Detailed numerical fit involving further constraints (invisible Higgs width, LUX, relic density,...)
 - Allow for additional non-WIMP DM component (PBHs, axions,...)
 - → Interesting implications on WIMP DM fraction

 $R = \rho_{\rm WIMP} / \rho_{\rm DM, \, total}$

Scalar Singlet Higgs Portal Model

[Silveira, Zee '85; McDonald '94; Burgess, Pospelov, Veldhuis: '01; ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S,0}^2 S^2 - \frac{1}{4} \lambda_S S^4 - \frac{1}{2} \lambda_{HS} S^2 H^{\dagger} H$$
(before EWSB)

Scalar Singlet Higgs Portal Model

[Silveira, Zee '85; McDonald '94; Burgess, Pospelov, Veldhuis: '01; ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} \supset -\frac{1}{2}m_S^2 S^2 - \frac{1}{4}\lambda_S S^4 - \frac{1}{4}\lambda_{HS} h^2 S^2 - \frac{1}{2}\lambda_{HS} vhS^2 ,$$

where $m_S^2 = m_{S,0}^2 + \lambda_{HS} v^2/2.$ (after EWSB)

Scalar Singlet Higgs Portal Model

[Silveira, Zee '85; McDonald '94; Burgess, Pospelov, Veldhuis: '01; ...]

- Higgs bilinear $H^{\dagger}H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

Dark Matter annihilation

Dark Matter annihilation

Gamma-ray spectrum

- Continuous photon spectrum
- Slow in fit
 - ⇒ Precompute spectra for all channels with MadGraph/Pythia 8
- During fit: Combine spectra according to contribution

$\chi^2\text{-}\mathrm{computation}$ for the GCE

- Take measured spectrum d_i and covariance matrix Σ_{ij} from [Calore, Cholis, Weniger: 1409.0042]
- Additional uncertainty on the theoretical prediction of the spectrum $\Sigma_{ij} \rightarrow \Sigma_{ij} + \Sigma_{ij} \delta_{ij} t_i^2 \sigma_t^2$, $\sigma_t = 10\%$ [Achterberg et al. 1502.05703]

- Large theoretical uncertainties on DM distribution in galaxy:
- Take NFWc profile 1.2 $40^{\circ} \times 40^{\circ}$ Lognormal $(x; \mu, \sigma)$ Vary around best fit parameters with MC 1 [from Calore, Cholis, Weniger: 1409.0042] = 0.01449010.8 \Rightarrow Distribution for *J*-factor $PDF(\overline{J})$ • Determine σ_{ξ} for $\xi = \ln(\bar{J}/\bar{J}_{nom})$ 0.6 0.4 • Compute χ^2 : 0.2 $\chi^{2} = \sum_{i,j} (d_{i} - e^{\xi} t_{i}) (\Sigma_{ij})^{-1} (d_{j} - e^{\xi} t_{j}) + \frac{\xi^{2}}{(\sigma_{\xi})^{2}}$ 0 0.51.522.53 1 \bar{J}/\bar{J}_{nom}

Jan Heisig (Aachen University)

7

Constraints on the parameter space

Sign on the Fløien Mountain, Bergen

Constraints on the parameter space

Constraints on the parameter space

 $J_{40^{\circ} \times 40^{\circ}}/J_{40^{\circ} \times 40^{\circ}, \text{nom}}$

Fit parameters and tools

- Allow for additional unspecified DM component -> WIMP fraction: $R = \rho_{\rm WIMP} / \rho_{\rm DM, \, total}$
- 4 scan parameters:

 $m_S: \quad 5 \dots 220 \text{ GeV}$ $\lambda_{HS}: \quad 3 \times 10^{-5} \dots 4\pi$ $\ln(\bar{J}/\bar{J}_{\text{nom}}): \quad -4\sigma_{\xi} \dots 4\sigma_{\xi}$ $R: \quad 10^{-3} \dots 1$

- Use MultiNest (nested sampling algorithm) [Feroz et al. '13]
- Annihilation cross sections and BRs: micrOMEGAs [Bélanger et al. '14]
- Frequentist interpretation

Results

GCE+BR_{inv}+LUX+dwarfs+ γ -lines+relic density

 $\Rightarrow \text{Relic density: } \Omega_{\text{DM, total}} = \frac{\Omega_{\text{WIMP}}}{R} \propto \frac{1}{R \langle \sigma v \rangle_{\text{f.o.}}}$

$$\rightarrow$$
 GCE flux: $\phi \propto R^2 \langle \sigma v \rangle_{\text{today}}$

Summary

- GCE: Astrophysics of WIMPs?
- Higgs Portal: Unique coupling to minimal DM
- Singlet Scalar Model: Good fit!
- After constraints: Only Higgs-resonance remains
- Allow for additional non-WIMP DM component
- Non-trivial implications for WIMP fraction near resonance (large velocity dependence)

Back-up I: Future experimental prospects

- Collider constraints: virtually unchallanged
- Constraints from dwarfs: General challenge for GCE
- Direct detection projections:

Back-up II: Photon spectra for best-fit points

Back-up III: Table with best-fit points

$\log L$ contribution	GCE	$+\mathrm{BR}_{\mathrm{inv}}$	+LUX	+dwarfs	+lines	+relic den.	2nd region
$m_S [{ m GeV}]$	$45.50^{+5.98}_{-5.36}$	$61.07_{-1.98}^{+2.65}$	$61.55_{-0.85}^{+1.78}$	$61.35_{-0.79}^{+1.90}$	$61.46_{-0.85}^{+1.87}$	$62.70\substack{+0.57\\-0.18}$	$62.52_{-0.01}^{+0.02}$
λ_{HS}	$0.17^{+11.67}_{-0.09}$	$0.0125\substack{+7.31\\-0.0125}$	$0.0082\substack{+0.317\\-0.0082}$	$0.0087\substack{+0.312\\-0.0087}$	$0.0082\substack{+0.315\\-0.0082}$	$0.022\substack{+0.015\\-0.013}$	$0.00029\substack{+0.0078\\-0.00010}$
R	$0.68^{+0.32}_{-0.65}$	$1.0^{+0.0}_{-1.0}$	$0.99\substack{+0.01\\-0.99}$	$1.0^{+0.0}_{-1.0}$	$1.0^{+0.0}_{-1.0}$	$0.054\substack{+0.141\\-0.053}$	$0.498\substack{+0.502\\-0.496}$
$\log J/J_{ m nom}$	$0.0\substack{+0.44\\-0.44}$	$-0.05\substack{+0.48\\-0.36}$	$0.02\substack{+0.42 \\ -0.43}$	$0.22_{-0.35}^{+0.36}$	$0.12\substack{+0.31 \\ -0.29}$	$0.13\substack{+0.30 \\ -0.32}$	$0.13\substack{+0.32 \\ -0.31}$
$\sigma v [10^{-26} \mathrm{cm}^3/\mathrm{s}]$	$1.97^{+1034}_{-1.38}$	$1.28^{+4.1e6}_{-0.61}$	$1.23^{+1.7e6}_{-0.55}$	$0.96^{+1.3e6}_{-0.37}$	$1.04^{+1.3e6}_{-0.42}$	$359^{+9.7e5}_{-327}$	$4.3^{+1.6e5}_{-0.9}$
$\sigma v R^2 [10^{-26} \mathrm{cm}^3/\mathrm{s}]$	$0.91\substack{+0.53 \\ -0.35}$	$1.28^{+2.02}_{-0.53}$	$1.21\substack{+0.68\\-0.45}$	$0.96\substack{+0.43 \\ -0.31}$	$1.04\substack{+0.39 \\ -0.32}$	$1.06\substack{+0.42\\-0.32}$	$1.06\substack{+0.43 \\ -0.31}$
$\chi^2_{ m GCE}$	19.3	25.3	25.6	26.0	26.0	26.8	26.7
$p(\chi^2_{ m GCE})$	0.57	0.20	0.24	0.22	0.21	0.18	0.18
$p({ m BR_{inv}})$	0.0	0.90	0.97	0.97	0.97	1.0	1.0
p(LUX)	0.0	0.32	0.62	0.58	0.62	0.84	1.0
p(dwarfs)	0.18	0.16	0.18	0.24	0.22	0.22	0.22
p(lines R3)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
p(relic den.)	0.03	0.0	0.0	0.0	0.0	0.99	1.0