Dark Matter from the Vector of SO(10)

in collaboration with S. M. Boucenna, and E. Nardi Phys. Lett. B755 (2016) 168, arXiv:1511.02524

Martin B. Krauss

12th International Workshop Dark Side of the Universe

Bergen, Norway

July 28, 2016

Motivation

Colorless, electrically neutral and weakly interacting particles in the GeV-TeV range well suited to reproduce DM energy density if **stable on cosmological timescales**.

Enforcing DM staibility:

- R-Parity (SUSY)
- Kaluza-Klein Parity
- T-parity (littlest Higgs)
- \mathbb{Z}_2 , in scotogenic model, inert doublet model, etc.

Breaking GUT symmetries \rightarrow remnant unbroken \mathbb{Z}_2 parity

SO(10) unifies SM fermions with N_R into ${\bf 16}$ irrep., allows for gauge coupling unification and proton stability, free from gauge anomalies.

The SO(10) framework I

Breaking SO(10) exclusively with vev in tensor representations

ightarrow unbroken \mathbb{Z}_2 remains

[Kibble, Lazarides, Shafi (1982)]

Stable particles in SO(10) representations

Fermions: 10, 45, 54, 120, 126, 210, 210',

Bosons: 16, 144.

see, e.g., [Kadastik, Kannike, Raidal (2009); Kadastik, Kannike, Raidal (2010)] [Frigerio, Hambye (2010)]

[Mambrini, Nagata, Olive, Quevillon, Zheng (2015); Nagata, Olive, Zheng (2015)]

So far, special attention to 16 and 45 o contain SM singlets (no DD)

Here: DM in fermionic 10

SO(10) framework f II

SO(10) breaking:

$$SO(10) \stackrel{\langle \mathbf{45}_H \rangle}{\longrightarrow} 3_C 2_L 2_R 1_{B-L}$$

$$\stackrel{\langle \overline{\mathbf{126}} \rangle}{\longrightarrow} 3_C 2_L 1_Y \otimes \mathbb{Z}_2$$

$$\stackrel{\langle \mathbf{10}_H \rangle}{\longrightarrow} 3_C 1_Q \otimes \mathbb{Z}_2$$

DM in $SU(2)_L \otimes SU(2)_R$ bidoublet:

$$\xi_{\mathcal{L},\mathcal{R}} = \begin{pmatrix} \xi_{\mathcal{L},\mathcal{R}}^{+-} & \xi_{\mathcal{L},\mathcal{R}}^{++} \\ \xi_{\mathcal{L},\mathcal{R}}^{--} & \xi_{\mathcal{L},\mathcal{R}}^{-+} \end{pmatrix}$$

Dark Matter mass

Two possible Dirac mass terms:

- $m_b \propto \langle {\bf 45} \rangle$, conserves L-R symmetry
- δ_m , transforms as $\langle {\bf 54} \rangle$, breaks L-R and EW symmetries

In our model:

No 54, but DM couples to Higgs bidoublet via loop $(10 imes 10 \supset 54)$

Mass splitting

Loop induced mass-splitting

$$\delta_m \propto v_u v_d \frac{m_b}{M_{W_R}^2}$$

 \Rightarrow Two non-degenerate Dirac fermions χ_l and χ_h with mass

$$m_{h,l} = m_b \pm \delta_m$$

Direct detection constraints

Couplings of $\chi_{l,h}$ to neutral gauge bosons off-diagonal:

Vectorlike neutral current

$$J_{\mu}^{\text{nc}} = \frac{1}{2} \overline{\chi_h} \gamma_{\mu} \chi_l + \text{h.c.}$$

Mass splitting $2\delta_m$ between the light and heavy neutral state, χ_l and χ_h is \gtrsim 200 keV \Rightarrow DD is kinematically suppressed.

Large enough splitting ightarrow upper bound on M_{W_R}

$$M_{W_R} \lesssim 25 \left(\frac{m_b}{1{
m TeV}}\right)^{1/2} {
m TeV}$$

Relic Density I

Mass splittings irrelevant for DM relic density:

ightarrow Assume two degenerate $SU(2)_L$ doublets at thermal freeze-out

Relic density

$$\Omega_{\rm DM}h^2 pprox 0.1 \left(\frac{m_{\rm DM}}{\frac{1}{\sqrt{2}} \cdot 1.1 {\rm TeV}} \right)^2$$

c.f. Minimal Dark Matter [Cirelli, Fornengo, Strumia (2006)]

- Annihilation via $Z_L \to {
 m correct}$ relic density for $m_b = 0.77 \, {
 m TeV}$
- lacktriangle Additional resonant annihilation via W_R and Z_R

Relic Density II

DM searches

Indirect Detection

- lacktriangle No diagonal coupling to $Z_{L,R}$
- Leading annihilation channel into W_LW_L and Z_LZ_L (via t-channel exchange of χ^\pm and χ_h)
- For $\chi_l \bar{\chi}_l \to W_L W_L$ we can estimate $\langle \sigma_W | v | \rangle \sim 3 \times 10^{-28} \left(2 \, \mathrm{TeV} / m_l \right)^2 \, \mathrm{cm}^3 / \mathrm{s}$
- Even with non-relativistic Sommerfeld corrections well below current limits ($\langle \sigma_W | v | \rangle \lesssim (10^{-25} 10^{-24}) \, \mathrm{cm}^3 / \mathrm{s}$ for the mass range $1 \, \mathrm{TeV} < m_l < 4 \, \mathrm{TeV}$)

Collider Searches

- \blacksquare Most sensitive searches from monojet searches ($pp \to \chi_a \chi_b j$)
- Large background from Z, W + jets
- Searches for quasi-degenerate Higgsino-like DM \to reach of $m_l \sim 250\,{\rm GeV}$ (relic density $\Rightarrow m_l \sim 0.77\,{\rm TeV}$)

Asymmetric component

- lacktriangle DM carries hypercharge ightarrow can distinguish particles from anti-particles
- lacktriangledown χ in chemical equilibrium with SM particles o acquires asymmetry

(c.f. Minimal Asymmetric Dark Matter [Boucenna, MBK, Nardi (2015)])

- Asymmetric contribution to relic density significant?
- \blacksquare In the MADM $SU(2)_L$ doublet asymmetry negligible

HERE:

- lacktriangle Tree-level asymmetry transfer via W_R
- Resonant annihilation of symmetric component
- ...

Still small asymmetric contribution expected, maybe except close to $\mathcal{Z}_{\mathcal{R}}$ resonance.

Summary & Conclusions

- Remnant \mathbb{Z}_2 from SO(10) breaking stabilizes DM
- lacktriangle Minimal scalar sector ${f 45}+{f \overline{126}}+{f 10}$
- DM in minimal 10 irrep. viable
- lacktriangle Mass-splitting via loop with W_R
- Light stable Dirac fermion χ_l as DM
- lacktriangle Non-diagonal coupling to $Z_L
 ightarrow {
 m evades}$ DD
- Upper limit on M_{W_R}