

Latest Results from DRIFT

Andrew Scarff University of Sheffield

On behalf of the DRIFT collaboration

Directional Detection

- DRIFT is a directional DM detector.
- See 'WIMP wind' from motion around galaxy, roughly towards Cygnus constellation.
- Dipole anisotropy peaking in the direction of motion of the Sun.
- Need to reconstruct energy and direction of nuclear recoils from WIMP interactions.
- This signature provides an unambiguous separation of signal and backgrounds.

1

DRIFT

- Current detector (DRIFT-IId) running at Boulby Underground Laboratory.
- 1m³ negative-ion TPC using two MWPCs for readout.
- Target gas (41 Torr):
 - CS₂ (30 Torr)
 - CF₄ (10 Torr)
 - O₂ (1 Torr)

- MWPCs contain 3 planes of wires.
 - 20 µm anode wire plane 2 mm separation.
 - Orthogonal 100 µm grid wire planes 1 cm from anode on either side.

Boulby Underground Laboratory

The UK's deep underground laboratory. In a working potash & salt mine in the NE of England.

1.1km depth (2805 mwe). With low background surrounding rock-salt.

DRIFT in the old Palmer Lab

AICL Fertilizers

Zero Background

Bead radius 0.9 µm - RPR Max. contained length

arXiv:1502.03535

Zero background achieved through combination of two methods.

1) Texturised thin-film cathode

• 0.9 µm aluminised-mylar.

- Bead-blasted to reduce max. contained alpha length.
- Factor 70 ± 20 reduction in probability of producing RPRs.

• Rejection via α -tagging = 99.97%

DSU 2016 Bergen - 25 July 2016

Andrew Scarff

Zero Background

arXiv:1308.0354

2) z-fiducialisation

- Addition of O2 produces minority carriers.
- Separation in peaks proportional to distance travelled.
- Allows full fiducialisation of detection region in z dimension.
- Cut in z removes remaining RPRs

Directional Sensitivity

- Directed neutron runs made to probe directional sensitivity.
- First measurement since minority carriers introduced.
- Looking for head-tail in optimal direction $(\pm z)$.
- Look for ratio of charge in beginning and end of the ionisation peak.
- Although not full reconstruction, head-tail can still be used to show anisotropy of recoil direction.

arXiv:1606.05364

6

Directional Sensitivity

- a calculated for each event, where $\alpha = \eta_1/\eta_2$.
- Mean α calculated for left and right detectors, $\langle \alpha \rangle_L \& \langle \alpha \rangle_R$.
- Due to shaping effects we take combination of left and right detectors for each run.
- δ = is the ratio of $|\Delta \alpha|$ to the mean of $\langle \alpha \rangle_L \& \langle \alpha \rangle_R$, expressed as a percent.
- The magnitude of δ parameter is equivalent to the amplitude of the headtail effect.

$$\alpha \equiv \frac{\eta_1}{\eta_2} \qquad \qquad \Delta \alpha \equiv \langle \alpha \rangle_L - \langle \alpha \rangle_R$$

$$\delta = 100 \frac{|\Delta \alpha|}{\frac{1}{2} \left(\langle \alpha \rangle_L + \langle \alpha \rangle_R \right)}$$

Directional Sensitivity

- See head-tail in optimal direction and none in anti-optimal as expected.
- Result appears higher than pre-O₂ result but that is due to seeing longer C & F recoils - where previous result used only S recoils.

Blue = Optimal Direction Red = Anti-Optimal Black = Pre-O2 Data

arXiv:1606.05364

Low Threshold Data

- Minority carriers 'steal' ~50% of charge from main I-peak.
- Effectively doubled our threshold in last set of data. (arXiv:1410.7821)
- We have now halved the threshold which increased efficiency.

Old efficiency map

New efficiency map

Efficiency Calculation

- Expose detector to Cf-252 neutron source then simulate same exposure. \bullet
- Take a ratio of detected/expected for different parts of the detector.

Data

Sensitivity to Rock Neutrons

- Detector run unshielded for 45.4 live days to test sensitivity to rock neutrons.
- 14 events seen. Result in agreement with GEANT4 simulation.

Data: 0.31 ± 0.08 events/day.

Geant4: 0.23 ± 0.02 events/day.

Gamma Rejection

- The 14 events seen may be from gammas.
- Tested by exposing detector to 3 x 37 kBq ⁶⁰Co sources for 2.90 live days.
- No events seen so we can calculate a gamma rejection factor.
- Within the fiducial window the Geant4 simulation predicts a rate of 46.26 ± 0.07 Hz.
- New (preliminary) rock-gamma rejection factor of **1.98 x 10⁻⁷** (90% C.L.).
- Gives upper limit (90% C.L.) on gamma contamination of 3 events.
- This shows most events were not from rock gammas.

Shielded running

- Run fully shielded for 54.7 live-days.
- No events seen in fiducial region so WIMP limit can be set.

WIMP Limits

 SD limit 3x lower than previous publication.

 More data on file so further improvements still to come.

Summary

- DRIFT is running background free.
- It has been shown that DRIFT is still sensitive to head-tail.
- A new measurement of background neutrons has been made in Boulby.
- The rock-gamma rejection factor has been improved from previous publications to 1.98 x 10⁻⁷ (90% C.L.).
- An improved dark matter limit has been set, 3x better than the previous DRIFT limit.

Thanks for listening!

Backup - Z calculation

DSU 2016 Bergen - 25 July 2016

Andrew Scarff