
BUILDING ALICE
SOFTWARE STACK

Giulio Eulisse (CERN)

Daily build

Deployment
on CVMFS

Deployment
on Packman

Continuous process

DELIVERABLE

INFRASTRUCTURE
BUILD TOOL

&
RECIPES

Jenkins CI Server

Mesos
Slaves

Mesos
Slaves

Mesos
Slaves

Workers are Docker containers
running on Mesos Slaves. No

more need for specially
installed machines (e.g. slc5)

Mesos Masters

Industry standard, opensource,
CI web application

We use Mesos cluster
management software, providing

HA, dynamic setup.

INFRASTRUCTURE

Mesos
Slaves

Mesos
Slaves

Mesos
Slaves

INFRASTRUCTURE

Mesos
Slaves

OpenStack
CERN/IT provided. Roughly
150 cores, 300 GB of RAM

in 20 or so VMs. All running
Centos 7.

Linux bare metal
Few big boxes under ALICE
control, kudos to Costin. All

running latest Ubuntu.

OSX bare metal
One Mac Mini
under ALICE

control.

Mesos
Slaves

Mesos
Slaves

Mesos
Slaves

Docker Docker Docker Docker Docker Docker

Mesos
Slaves

WHY?
TECHNOLOGY MOTIVATION NET RESULT

Jenkins Workflow management,
logging, reports

Click on a web page to define a
job / browse build results.

Docker Isolate application from
infrastructure

slc5 builds on centos7
machines. Infrastructure

machine configuration minimal.

Mesos Avoid static partitioning of
resources

Exploit of "peak only" usage
patterns. Common layer

between different schedulers.

OpenStack Simplify hardware ownership
and purchases

Get new VMs with a one line
command / click on a web page.

https://alijenkins.cern.ch

Over 2K build jobs in the last 3 months, 4 different
architectures plus special builds. Used both for test

builds and production releases.

7

Provisioning & scheduling Configuration management /
deployment

Continuous integration Monitoring & Results

Log parsing
& mining

BUILD TOOL: ALIBUILD

Open Source

Tool itself can be found at https://github.com/alisw/alibuild, actual recipes to build
externals are at https://github.com/alisw/alidist.

Standalone

Python is the only dependency. Does not depend on packaging technology, produces tarballs.

No magic, compact, maintainable

Tool itself is 527 SLOCs of Python + 116 SLOCs of Bash. Recipes are simple Bash
scripts with a YAML header.

Git based workflow, reproducible builds

Configuration management happens in git. A given checkout of alidist corresponds to
a given configuration.

Not a CMake / make / (pick your favourite tool) replacement

9

https://github.com/alisw/alibuild
https://github.com/alisw/alidist

INSTANT GRATIFICATION

git clone https://github.com/alisw/alibuild

git clone https://github.com/alisw/alidist

alibuild/aliBuild -d -j 40 -a slc7_x86-64 build AliRoot

Any resemblance to other experiments naming
conventions is purely fictional.

10

Full documentation at http://alisw.github.io/alibuild

https://github.com/alisw/alibuild
https://github.com/alisw/alidist
http://alisw.github.io/alibuild

11

PRODUCTION

DEVELOPMENT

RECIPE EXAMPLE

package: AliRoot
version: %(commit_hash)s
requires:
 - ROOT
 - fastjet
build_requires:
 - CMake
source: http://git.cern.ch/pub/AliRoot
tag: master

cmake $SOURCEDIR -D$CMAKE_INSTALL_PREFIX=$INSTALLROOT \
-DROOTSYS=$ROOT_ROOT \
-${FASTJET_ROOT:+-DFASTJET=$FASTJET_ROOT}

make -j 20
make install

YAML formatted metadata at the top.

12

RECIPE EXAMPLE

package: AliRoot
version: %(commit_hash)s
requires:
 - ROOT
 - fastjet
build_requires:
 - CMake
source: http://git.cern.ch/pub/AliRoot
tag: master

cmake $SOURCEDIR -D$CMAKE_INSTALL_PREFIX=$INSTALLROOT \
-DROOTSYS=$ROOT_ROOT \
-${FASTJET_ROOT:+-DFASTJET=$FASTJET_ROOT}

make -j 20
make install

Bash recipe at the bottom. Conventions over template magic / special languages.

13

RECIPE EXAMPLE

package: AliRoot
version: %(commit_hash)s
requires:
 - ROOT
 - fastjet
build_requires:
 - CMake
source: http://git.cern.ch/pub/AliRoot
tag: master

cmake $SOURCEDIR -D$CMAKE_INSTALL_PREFIX=$INSTALLROOT \
-DROOTSYS=$ROOT_ROOT \
-${FASTJET_ROOT:+-DFASTJET=$FASTJET_ROOT}

make -j 20
make install

Sources are always expected in git repositories. It simplifies source fetching
logic a lot, allows automatic rebuilds when tip of a given branch changes.

14

DEPENDENCIES HANDLING

Consistent builds

When you change something in the recipe or in the tool itself, it notices and acts
accordingly on a subsequent build of the tool and its dependencies. E.g. if you change
ROOT recipe and try to rebuild AliRoot, it will notice.

Flexible (and correct) handling of dependencies

Topological sort of the dependency graph for correct build order, even in the case of
implicit dependencies. Run-time and build-time dependencies. Ability to disable
dependencies. Platform (and soon experiment) specific dependencies. Parallel
installations of externals.

Parallel installations

The requirement to have one common namespace for all our builds is not going away any
time soon. Same for the ability to reuse dependencies between different builds. However,
nothing prevents to regroup the packages at a later stage to simplify distribution.

15

CONSISTENT BUILDS

If you change GSL
recipe or metadata...

libxml2

zlib

ROOT

AliEn-RuntimeGSL

ZeroMQ

sodium Python

FreeType libpng

O2

FairRootAliRoot pythia

pythia6GEANT4GEANT3

boost

GCCfastjet HepMClhapdf

cgal yaml-cpp

16

CONSISTENT BUILDS

libxml2

zlib

ROOT

AliEn-RuntimeGSL

ZeroMQ

sodium Python

FreeType libpng

O2

FairRootAliRoot pythia

pythia6GEANT4GEANT3

boost

GCCfastjet HepMClhapdf

cgal yaml-cpp
aliBuild notices and
will rebuild (in the

correct order)
everything which

depends on it

17

If you change GSL
recipe or metadata...

PARALLEL INSTALLATIONS

../osx_x86-64/

 ../AliRoot/

 ../v1-1

 ../v2-1

 ../latest

 ../boost/

 ../latest

 ../v1.57.0-1

 ../v1.59.0-1

 ../fastjet/

 ../latest

 ../v3.1.3_1.017-1

 ../v3.1.3_1.017-2

 ../v3.1.3_1.020-1

../slc7_x86-64/...

Usual:
<architecture>/<package>/<version>

hierarchies.

Architecture is just a string, no
platform auto-detection. It
identifies the build host, not the
installation or runtime
requirements.

Changes in build recipes result in
different "revisions".

18

Reuse builds

Packages built by one builder can be reused by other builders, even on a
separate machine. This comes handy when you cannot guarantee that
you will always rebuild on the same machine.

K.I.S.S.

The repository is just an object store with a bunch of symlinks to keep
track of reproducibility.

Authoritative source

The binary repository acts as authoritative source to then do deployments.

BINARY REPOSITORY

19

BINARY REPOSITORY

Build ROOT 6.X.Y-1

Reuse ROOT 6.X.Y-1

time

Build package
is uploaded to

store

Later rebuilds of the
same recipe (on a

different machine /
docker container) do

not rebuild but
download the binary

package from the store.

20

BINARY REPOSITORY

Build ROOT 6.X.Y-1
using recipe A

Build ROOT 6.X.Y-1
using recipe B

time

Two different builders
might end up trying to

upload the same
package from different

recipes.

Only the first one succeeds,
the other one does not
rebuild but repackages

everything and tries again.

Repackage to
ROOT 6.X.Y-2

21

CVMFS / YUM / APT SUPPORT

Build ROOT 6.X.Y-1

TARS

time

Build package
is uploaded to

store

Tarballs are converted to
RPMs / DPKG via FPM,
store metadata is used to

construct a standard
yum / apt repository

YUM / RPMS

aliPublish

APT / DEBSCVMFS

22

aliBuild can pick up sources from local checkouts for the builds. After the first build,
one can go inside the build directory and type "make install". Handy for those who
need to develop externals while improving the application code (e.g. patching ROOT
fixes).

git clone https://github.com/alisw/alibuild

git clone https://github.com/alisw/alidist

git clone https://github.com/root-mirror/root ROOT

alibuild/aliBuild -a slc7_x86-64 --devel ROOT build AliRoot

...

cd sw/BUILD/ROOT-latest/ROOT

make install

DEVELOPER MODE

23

https://github.com/alisw/alibuild
https://github.com/alisw/alidist
https://github.com/root-mirror/root

DOCKER SUPPORT

Simplify cross platform builds

Handy for cross platform builds, i.e. using your Mac laptop to test builds
in the slc7 environment. Just add "--docker" to the command line and the
build will happen inside a container matching the provided architecture.

Create docker containers (not implemented, yet)

It's trivial to extend the above to allow building and uploading of the
containers with the results of the build itself.

24

DEFAULTS & DISABLING DEPENDENCIES

Support for common options

A special recipe, called "defaults-release.sh" is added as a build requirement to
each other. This recipe can be used to specify common options which affect global
behaviour of the build, e.g. CXXFLAGS.

Command line overwriteable

Which defaults should be used can be specified on the command line via the
"--defaults <name>" option. E.g. "--defaults debug" will add defaults-debug.sh
everywhere as a dependency, setting CXXFLAGS="-g -O0" everywhere.

Disabling dependencies

It's possible to disable dependencies by using the command line option "--disable".
Also in this case consistency of the build is ensured.

25

ARCHITECTURE CUSTOMIZATIONS

$ARCHITECTURE

The system exports the command line provided architecture to the recipes as an environment variable.

Architecture specific dependencies

aliBuild supports architecture specific dependencies in the YAML preamble by adding a regular
expression which needs to match for the requirements to be valid. E.g.:

name: AliRoot-tests

requires:

 - AliRoot

 - IgProf:slc7.*

You can then use $<package>_ROOT to detect if the dependency was included or not.

26

EXPERIMENT CUSTOMIZATIONS

aliBuild... alfaBuild... anyBuild!

You can get experiment specific customisations (at the moment limited to a few details, like the name
of the project hosting recipes) by simply using a symlink with the correct name. E.g. GSI people are
experimenting with "alfaBuild" which uses the "alfadist" repository (i.e. "Florian is happy").

Build customizations (idea)

Build customisations can be driven the same way as the architecture ones. A $FLAVOUR can be
defined as part of the build environment, depending on the tool name:

E.g.: "aliBuild" ⇒ "FLAVOUR=ali", "alfaBuild" ⇒ "FLAVOUR=alfa".

name: ROOT

requires:

 - Alien: flavour=ali

 - Python: flavour=(panda|cbm)

27

HOW TO USE

To build a package:
git clone https://github.com/alisw/alibuild.git
git clone https://github.com/alisw/alidist.git
alibuild/aliBuild -d -a slc7_x86-64 -j 16 build AliRoot

To build a package in developer mode:
git clone https://github.com/root-mirror/ROOT
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --devel ROOT build AliRoot

To build a package in docker mode:
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --docker build AliRoot

To disable a package (and drop all its dependencies):
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --disable GEANT4 build O2
alibuild/aliBuild -d -a slc7_x86-64 -j 16 --disable simulation build O2

28

SOURCECODE HANDLING

Git(hub/lab) based

The tool handles directly git repositories only. This simplifies enormously
the code which takes care or managing the sources and provides nice,
uniform, web based views.

Benefits

- Support for "moveable" builds without extra code.

- Support for changing repository without rebuilding (assuming the
commit hash is the same).

- Easy backup / proxying / mirroring of sources. Fast downloads for daily
builds if local "reference" clone is available.

29

SOURCECODE AND PATCHES

Patches are inevitable

Some bugfixes just cannot wait for the next ROOT release. Sometimes ZeroMQ does
not compile on Mac and we are the first ones to find out (e.g. yours truly: https://
github.com/zeromq/libzmq/pull/1483). The goal is to simplify contributing
upstream, not to fork.

Policy on how to handle external sources

Policy over tools. Current one I wrote and we use:

https://github.com/alisw/alidist#guidelines-for-handling-externals-sources

Policy is NOT mandatory

Of course there are cases where we cannot redistribute sources. Preferred option would
be use a protected git repository, if not even is an option, "curl inside the recipe" is of
course not forbidden. You simply lose the benefits of dealing with git.

30

https://github.com/zeromq/libzmq/pull/1483
https://github.com/alisw/alidist#guidelines-for-handling-externals-sources

PROPOSED POLICY

If Sources hosted on git, used unmodified:

➤ Directly refer to the Upstream repository.

If Sources hosted on git, need patching:

➤ Fork / mirror the relevant parts of the Upstream repository

➤ Pick a tag / commit which will be used as <fork-point>, create a branch
"alice/<fork-point>". Apply Patches on top.

If Sources are not hosted on git:

➤ Create an ALICE mirror in some agreed location, e.g. https://github.com/alisw/

➤ Import a tar-ball with one Upstream version, commit it to git, tag it with the
original tag.

➤ Create a branch "alice/<fork-point>" and apply Patches on top.

31

https://github.com/alisw/

PROPOSED POLICY: BENEFITS

Sources history can be browsed:

https://github.com/alisw/root

Patched Sources can be pin-pointed:

https://github.com/alisw/root/tree/alice/v5-34-30

Upstream Sources can be pin-pointed:

https://github.com/alisw/root/tree/v5-34-30

Changes between w.r.t. Upstream can be diff-ed

https://github.com/alisw/root/compare/v5-34-30...alice/v5-34-30

32

https://github.com/alisw/root
https://github.com/alisw/root/tree/alice/v5-34-30
https://github.com/alisw/root/tree/v5-34-30

PROPOSED POLICY: BENEFITS

Sources history can be browsed:

https://github.com/alisw/geant4/

Patched Sources can be pin-pointed:

https://github.com/alisw/geant4/tree/alice/v4.10.01.p02

Upstream Sources can be pin-pointed:

https://github.com/alisw/geant4/tree/v4.10.01.p02

Changes between w.r.t. Upstream can be diff-ed:

https://github.com/alisw/geant4/compare/v4.10.01.p02...alice/v4.10.01.p02

33

https://github.com/alisw/geant4/
https://github.com/alisw/geant4/tree/alice/v4.10.01.p02
https://github.com/alisw/geant4/tree/v4.10.01.p02
https://github.com/alisw/geant4/compare/v4.10.01.p02...alice/v4.10.01.p02

Mar May Jul Sep Nov

0
50

10
0

15
0

Build availability (lower is better)

Start of the build

Ti
m

e
to

 e
m

ai
l n

ot
ifi

ca
tio

n
(m

)

New system in production

