
DDS
Dynamic Deployment System

Andrey Lebedev
Anar Manafov

GSI
2015-11-25

The Dynamic Deployment System
is a tool-set that automates and significantly simplifies a

deployment of user defined processes and their dependencies on
any resource management system using a given topology

Basic concepts
DDS:

•  implements a single-responsibility-principle command line tool-set and APIs,

•  treats users’ tasks as black boxes,

•  doesn’t depend on RMS (provides deployment via SSH, when no RMS is present),

•  supports workers behind FireWalls (outgoing connection from WNs
required),

•  doesn’t require pre-installation on WNs,

•  deploys private facilities on demand with isolated sandboxes,

•  provides a key-value properties propagation service for tasks,

•  provides a rules based execution of tasks.

The system takes so called “topology file” as the input. �
Users describe desired tasks and their dependencies using this file.

<topology id="myTopology"> !
!
 <decltask id="task1"> !

 <exe reachable="false">/Users/andrey/Test1.sh –l</exe>!
</decltask> !

!
<decltask id="task2"> !
 <exe>/Users/andrey/DDS/Test2.sh</exe>!
</decltask>!
!
<main id="main"> !
 <task>task1</task>!

 <task>task2</task>!
</main>!
!

</topology> !

The contract

DDS Workflow

Server

dds-commander

WN

WN

dds-scout dds-agent

dds-scout dds-agent

dds-topology --activate

Task1

Task2

dds-server start

dds-submit -r ssh --ssh-rms-cfg ssh_hosts.cfg

dds-topology --set topology_test.xml
ssh_hosts.cfg

@bash_begin@
@bash_end@

flp, lxi0234.gsi.de, , /tmp/dds_wrk, 8
epn, lxi235.gsi.de, , /tmp/dds_wrk, 10

DDS SSH plugin cfg file

 Highlights since last meeting
1.  task requirements based on the worker node name in

the SSH configuration,
2.  internal statistics tracking and accumulation,
3.  custom commands for user tasks and ext. utils,
4.  new user APIs: env. properties, custom protocol

commands,
5.  dds-submit: learned a localhost RMS,
6.  improved internal transport protocol,
7.  improved test coverage,
8.  tutorials for key-value propagation and custom

commands

… many more other fixes and stability improvements
more details here: https://github.com/FairRootGroup/DDS/blob/master/ReleaseNotes.md

Requirements

• Two possibilities to specify a task and collection
requirement based on:

1.  host name of the computing node

2.  worker node name in the SSH configuration

 <declrequirement id="reqHost">
 <hostPattern type="hostname" value=”lxi(1|2|3|4).gsi.de"/>

 </declrequirement>

 <declrequirement id="reqNodeNameSSH">
 <hostPattern type="wnname" value=”flp*"/>

 </declrequirement>

hosts.cfg

@bash_begin@
@bash_end@

flp, lxi0234.gsi.de, , /tmp/dds_wrk, 8
epn, lxi235.gsi.de, , /tmp/dds_wrk, 10

Internal statistics tracking
Message size, message
queue size for read and
write operations.

dds-stat enable

dds-stat disable

dds-stat get

Statistics is accumulated on
 the commander server for
 each channel separately.

Stat engine does not effect
 the overall performance.

Custom commands (1)
Sending of custom commands from user tasks and ext. utilities.

Two use cases:
1.  User task which connects to DDS agent
2.  Ext. utility which connects to DDS commander

Condition types:
1.  Internal channel ID which is the same as sender ID.
2.  Path in the topology: main/RecoGroup/TrackingTask.
3.  Hash path in the topology: main/RecoGroup/TrackingTask_23.

Broadcast custom command
to all tasks with this path.

Task index.

A custom command is a standard part of the DDS protocol.
From the user perspective a command can be any text, for example, JSON or XML.
A custom command recipient is defined by a condition.

Custom commands (2)

#include “CustomCmd.h”

CCustomCmd ddsCustomCmd;

// Subscribe on custom commands
ddsCustomCmd.subscribeCmd(
 [](const string& _command, const string& _condition, uint64_t _senderId)
{
 cout << ”Сommand: " << _command << " condition: " << _condition
 << " senderId: " << _senderId << endl;

 // Send message back to sender
 if (_command == "please-reply”)
 ddsCustomCmd.sendCmd("reply“, to_string(_senderId));
});

// Subscribe on reply from DDS commander server
ddsCustomCmd.subscribeReply([](const string& _msg)
{
 cout << ”Message: " << _msg << endl;
});

New library dds-custom-cmd-lib and header file “CustomCmd.h”
with user API

For more information refer to Tutorial2 of DDS.

Custom commands (3)
A possible use case: collect log from the user tasks

Server

dds-commander

dds-agent

dds-agent

Task1

Task2

LOG-
collector

DDSCustomCmd

DDSCustomCmd

DDSCustomCmd

Custom
command

requesting logs

Reply with log
from task

// Subscribe on custom commands
ddsCustomCmd.subscribeCmd(...);

// Send custom command
ddsCustomCmd.sendCmd(...);

dds-submit learned a localhost RMS

if you want to run on the localhost

dds-submit -r ssh --ssh-rms-cfg ssh_hosts.cfg

dds-submit -r localhost –n 10

If -n is omitted, than the number of deployed agents is equal
 to the number of logical cores.

dds-submit -r localhost

Documentation and tutorials

• Tutorial1: key-value propagation

• Tutorial2: custom commands

For more information refer to DDS documentation:
http://dds.gsi.de/documentation.html

• User manual

• API documentation

Plugins
Server

dds-commanderdds-submit

dds-submit-ssh

SSH plugin

-r ssh
-r slurm
-r mesos

1.  dds-commander starts a plugin based on the dds-submit parameter,
2.  plugin connects back to dds-commander,
3.  plugin receives submission details,
4.  plugins takes WN package and deploys it to WNs.

dds-submit-slurm

Slurm plugin

dds-submit-mesos
Mesos plugin

Cluster

Slurm

Mesos

DDS worker
package DDS worker

package

DDS worker
package

DDS worker
package

DDS protocol

Master agent feature

1.  DDS Commander will have one connection per host,
2.  master agents will act as dummy proxy services, no special lo

gic will be put on them except key-value propagation inside c
ollections,

3.  key-value will be either global or local for a collection

Work in progress. Expected in the next DDS release 1.2.

Topology editor

Demo by Alexey Rybalchenko and Aleksandar Rusinov

http://rbx.github.io/DDS-topology-editor/

FairRoot example with DDS

Demo by Alexey Rybalchenko

https://github.com/FairRootGroup/FairRoot/tree/master/examples/MQ/3-dds

Summary

•  Current stable release - DDS v1.0 (2015-11-20, http://dds.gsi.de/download.html)

•  Home site: http://dds.gsi.de

•  User’s Manual: http://dds.gsi.de/documentation.html

•  Continuous integration: http://demac012.gsi.de:22001/waterfall

•  Source Code:�
https://github.com/FairRootGroup/DDS�
https://github.com/FairRootGroup/DDS-user-manual�
https://github.com/FairRootGroup/DDS-web-site�
https://github.com/FairRootGroup/DDS-topology-editor

