Correction and Distortion look-up tables by following the electron drift, ATO-112

Rifki Sadikin, Jens Wiechula, Marian Ivanov, Kai Schweda

November 24, 2015

<ロ > < 団 > < 畳 > < 茎 > < 茎 > = うへで 1/24

Table of contents

Correction/Distortion Framework by Following the Drift Line

Local Distortion/Correction

Global Distortion/Correction

Consistency

Correctness testing

Correction/Distortion Framework

• GetCorrection(x[], roc, dx[]) \leftarrow CorrLookUpTables

▶ GetDistortion(x[], roc, dx[]) ← DistLookUpTables

Distortion Algorithm Sketch

$$\begin{array}{c}
1. \nabla^2 V(r, z, \rho) = -\frac{1}{\epsilon_0} \rho(r, \phi, z) \\
\downarrow \\
2. \vec{E}(r, \rho, z) = -\nabla V(r, \rho, z) \\
\downarrow \\
3. \hat{\delta}_{rE}(r_i, \phi_j, z_k) = c_1 \int_{z_k}^{z_{k-1}} \frac{E_r}{E_z} dz + c_2 \int_{z_k}^{z_{k-1}} \frac{E_{\phi}}{E_z} dz \\
\hat{\delta}_{\phi rE}(r_i, \phi_j, z_k) = c_2 \int_{z_k}^{z_{k-1}} \frac{E_r}{E_z} dz - c_1 \int_{z_k}^{z_{k-1}} \frac{E_{\phi}}{E_z} dz \\
\hat{\delta}_z(r_i, \phi_j, z_k) = \int_{z_k}^{z_{k-1}} \frac{v'(E)}{v_0} (E - E_0) dz \\
\downarrow \\
4. Follow the driftline from
(r_i, \phi_j, z_k) \rightarrow (r_i + \delta r_i, \phi_j + \delta \phi_j, z_0 + \delta z_k) \\
\downarrow \\
5. Assign distortion Dist(r_i, \phi_j, z_k) = (\delta r, \delta phi, \delta z)
\end{array}$$

Local Distortion

- Local distortion is calculated based on formulation in ALICE-INT-2010-016 (Simplified Langevin Eq)
- ► This integration is in *z* direction. Let suppose we want to calculate local distortion at (r_i, z_j, ϕ_m) , we require $\vec{E}(r_i, z_{j+1}, \phi_m)$ and $\vec{E}(r_i, z_j, \phi_m)$ are known.

Local Distortion (2)

Integration

We can calculate definite integrations for each distortions respect of z from z_j to z_{j+1} as follows: $\int_{z_j}^{z_{j+1}} \frac{E_r}{E_z}(r_i, z_j, \phi_m) dz \approx \frac{-1}{ezField} \frac{h_z}{2.0} \left(E_r(r_i, z_j, \phi_m) + E_r(r_i, z_{j+1}, \phi_m) \right)$ $\int_{z_j}^{z_{j+1}} \frac{E_{\phi}}{E_z}(r_i, z_j, \phi_m) dz \approx \frac{-1}{ezField} \frac{h_z}{2.0} \left(E_{\phi}(r_i, z_j, \phi_m) + E_{\phi}(r_i, z_{j+1}, \phi_m) \right)$ $\int_{z_j}^{z_{j+1}} E_z(r_i, z_j, \phi_m) dz \approx \frac{h_z}{2.0} \left(E_z(r_i, z_j, \phi_m) + E_z(r_i, z_{j+1}, \phi_m) \right)$ The code sniplet:

```
// = Electric Field (V/cm) Magnitude ~ -400 V/cm;
Double_t ezField = (fgkCathodeV-fgkGG)/fgkTPCZO;
localIntErOverEz = (gridSizeZ/2.0)*((*eR)(i,j)+(*eR)(i,j+1))/(-1*ezField) ;
localIntEphiOverEz = (gridSizeZ/2.0)*((*ePhi)(i,j)+(*ePhi)(i,j+1))/(-1*ezField) ;
localIntDeltaEz = (gridSizeZ/2.0)*((*eZ)(i,j)+(*eZ)(i,j+1)) ;
```


Local Distortion (3)

After we have local integrations for ellectric fields in each direction, local distortion $\hat{\delta}(r_i, z_j, \phi_m)$ is calculated by simplified Langevin equation:

$$\begin{split} \hat{\delta}_{rE}(r_i, z_j, \phi_m) &= c_0 \int_{z_j}^{z_{j+1}} \frac{E_r}{E_z} dz + c_1 \int_{z_j}^{z_{j+1}} \frac{E_\phi}{E_z} dz \\ r \hat{\delta}_{\phi E}(r_i, z_j, \phi_m) &= -c_1 \int_{z_j}^{z_{j+1}} \frac{E_j}{E_j} dz + c_0 \int_{j_j}^{z_{j+1}} \frac{E_\phi}{E_z} dz \\ \hat{\delta}_z(r_i, z_j, \phi_m) &= \int_{z_j}^{z_{j+1}} \frac{v'(E)}{v_0} (E - E_0) dz \\ \end{split}$$
Where c_0 and c_1 are constants (see the ALICE-INT-2010-016 for further details).

```
(*distDrDz)(i,j) = fC0*localIntErOverEz + fC1*localIntEphiOverEz;
(*distDphiRDz)(i,j) = fC0*localIntEphiOverEz - fC1*localIntErOverEz ;
(*distDz)(i,j) = localIntDeltaEz*fgkdvdE*fgkdvdE;
```


Local Correction

Let suppose we want to calculate local correction at $(r_i, \mathbf{z}_{j+1}, \phi_m)$. Then we can calculate definite integrations for each directions in respect of z from z_{j+1} to z_j as follows:

$$\int_{Z_{j+1}}^{Z_j} \frac{E_r}{E_z}(r_i, z_j, \phi_m) dz \approx -1 * \frac{-1}{\exp \operatorname{Field}} \frac{hz}{2.0} \left(E_r(r_i, z_j, \phi_m) + E_r(r_i, z_{j+1}, \phi_m) \right)$$

$$\int_{Z_{j+1}}^{Z_j} \frac{E_{\phi}}{E_z}(r_i, z_j, \phi_m) dz \approx -1 * \frac{-1}{\exp \operatorname{Field}} \frac{hz}{2.0} \left(E_{\phi}(r_i, z_j, \phi_m) + E_{\phi}(r_i, z_{j+1}, \phi_m) \right)$$

$$\int_{Z_{j+1}}^{Z_j} E_z(r_i, z_j, \phi_m) dz \approx -1 * \frac{hz}{2.0} \left(E_z(r_i, z_j, \phi_m) + E_z(r_i, z_{j+1}, \phi_m) \right)$$

Local Correction (2)

 Local correction at δ['](r_i, z_{j+1}, φ_m) is calculated by simplified Langevin equation:

$$\begin{split} \delta' {}_{rE}(r_{i}, z_{j+1}, \phi_{m}) &= c_{0} \int_{z_{j+1}}^{z_{j}} \frac{E_{r}}{E_{z}} dz + c_{1} \int_{z_{j+1}}^{z_{j}} \frac{E_{\phi}}{E_{z}} dz \\ r \delta' {}_{\phi E}(r_{i}, z_{j+1}, \phi_{m}) &= -c_{1} \int_{z_{j+1}}^{z_{j}} \frac{E_{j}}{E_{j}} dz + c_{0} \int_{z_{j+1}}^{z_{j}} \frac{E_{\phi}}{E_{z}} dz \\ \delta' {}_{z}(r_{i}, z_{j+1}, \phi_{m}) &= \int_{z_{j+1}}^{z_{j}} \frac{v'(E)}{v_{0}} (E - E_{0}) dz \end{split}$$

► For implementation, we use the fact that $\delta'_{rE}(r_i, z_{j+1}, \phi_m) = -1 * \delta_{rE}(r_i, z_j, \phi_m)$ $r\delta'_{\phi E}(r_i, z_{j+1}, \phi_m) = -1 * r\delta_{\phi E}(r_i, z_j, \phi_m)$ $\delta'_z(r_i, z_{j+1}, \phi_m) = -1 * \delta_z(r_i, z_j, \phi_m)$ (*corrDr2)(i,j+1) = -1* (*distDrD2)(i,j); (*corrDpi)(i,j+1) = -1* (*distDpi)(i,j); (*corrD2)(i,j+1) = -1* (*distDz)(i,j);

Global Distortion/Following the driftline

Interpolation is used for computing intermediate local distortion.

Global Distortion

Algorithm 1 Global Distortion

```
1. for m = 0 to PhiSlice-1 do
            for j = 0 to Zcolumn-2 do
 2.
                  for i = 0to i = Rrow-1 do
 3:
                        \delta_{rF}(r_i, \phi_m, z_i) = 0, \ \delta_{\phi rF}(r_i, \phi_m, z_i) = 0
 4.
                        \delta_z(r_i, \phi_m, z_i) = 0, r = r_i, \phi = \phi_m, z = z_i
  5:
                       for jj = j to Zcolumn-2 do
(\hat{\delta}_{rE}, \hat{\delta}_{\phi rE}, \hat{\delta}_z) = interpolate(r, z, \phi)
 6:
 7.
                             \phi + = \hat{\delta}_{r\phi E}/r, r + = \hat{\delta}_{rE} z = z_{ii-1} + \hat{\delta}_z
 8:
                             \delta_{rE}(r_i, \phi_m, z_i) + = \hat{\delta}_{rF}
 9:
                             \delta_{\phi rE}(\mathbf{r}_i, \phi_m, \mathbf{z}_i) + = \hat{\delta}_{\phi rE}
10:
                             \delta_{z}(\mathbf{r}_{i}, \phi_{m}, \mathbf{z}_{i}) + = \hat{\delta}_{z}
11.
                        end for
12:
                  end for
13.
            end for
14:
15: end for
```


Global Correction/Following the driftline

Interpolation is used for computing intermediate local correction. $\bigotimes \bigotimes_{\text{ALCE}} \bigoplus$

Algorithm 2 Global Correction

1: for j = Zcolumn - 2 to 0 do
2: for m = 0 to PhiSlice-1 do
3: for i = 0 to i= Rrow-1 do
4:
$$\phi = \phi_m + \delta'_{\rho r E}(r_i, \phi_m, z_{j-1})/r$$

5: $r = r_i + \delta'_{r E}(r_i, \phi_m, z_{j-1})$
6: $z = z_{j-1} + \delta'_z(r_i, \phi_m, z_{j-1})$
7: $(\delta'_{r E}, \delta'_{\phi r E}, \delta'_z) = \text{interpolate}(r, \phi, z, \delta')$
8: $\delta'_{r E}(r_i, \phi_m, z_j) + = \delta'_{r E}$
9: $\delta'_{\phi r E}(r_i, \phi_m, z_j) + = \delta'_z$
10: $\delta'_z(r_i, \phi_m, z_j) + = \delta'_z$
11: end for
12: end for
13: end for

Computation Cost of Naive Algorithm

	Time in s				
Size	$(17)^2 + 18$	$(33)^2 + 2 * 18$	$(65)^2 + 3 * 18$	$(129)^2 + 4 * 18$	
Poisson Solver	0.01	0.13	2.49	59.85	
Electric Field Calc	0.00	0.00	0.01	0.13	
Local Dist/Corr	0.00	0.01	0.03	0.25	
Global Dist/Corr	0.04	0.59	8.65	139.26	
Lookup Table Fill	0.74	0.76	0.74	0.84	

・ ロ ト ・ 一部 ト ・ 注 ト ・ 注 ・ り へ や 14/24

Global Distortion

Since $\delta'(r_i, z_j, \phi_m) = -\delta(r_i, z_j, \phi_m)$, we could use Global Correction for interpolation in Global Distortion. So, we remove one inner loop in Global distortion

Algorithm 3 Global Distortion 1: for i = ZColumn-2 to 0 do for m = 0 to PhiSlice-1 do 2. for i = 0 to i =Rrow-1 do 3: $r = r_i, \phi = \phi_m, z = z_{i-1}$ 4. $(\delta_{rE}, \delta_{\phi rE}, \delta_z) = -interpolate(r, \phi, z, \delta')$ 5: $(\hat{\delta}_{rE}, \hat{\delta}_{\phi rE}, \hat{\delta}_{z}) = \text{interpolate}(r + \delta_{rE}, \phi + \delta_{\phi rE}/r, z + \delta_{z}, \hat{\delta})$ 6: $\delta_{rE}(r_i, \phi_m, z_i) + = \hat{\delta'}_{rE} \ \delta_{\phi rE}(r_i, \phi_m, z_i) + = \hat{\delta'}_{\phi rE} \ \delta_z(r_i, \phi_m, z_i) + = \hat{\delta'}_z$ 7: end for 8. end for 9: 10: end for

<ロト</th>
 ・< 言ト< 言ト</th>
 ・< 15/24</th>

Computation Cost of kUseInterpolation Algorithm

	Time in s				
Size	$(17)^2 + 18$	$(33)^2 + 2 * 18$	$(65)^2 + 3 * 18$	$(129)^2 + 4 * 18$	
Poisson Solver	0.01	0.13	2.49	59.85	
Electric Field Calc	0.00	0.00	0.01	0.13	
Local Dist/Corr	0.00	0.01	0.03	0.25	
Global Dist/Corr	0.04 (0.01)	0.59 (0.04)	8.65 (0.38)	139.26 (4.18)	
Lookup Table Fill	0.74	0.76	0.74	0.84	

・ ロ ト ・ 一部 ト ・ 注 ト ・ 注 ・ り へ (* 16/24

Unit Test for Distortion-Correction

- Generate points for testing in the volume (xlist, ylist, zlist)
- For each points (x_i, y_j, z_k) , do the following:
 - 1. $(\delta x_{\text{dist}}, \delta y_{\text{dist}}, \delta z_{\text{dist}}) = \text{GetDistortion}(x_i, y_j, z_k)$ 2. $(x'_i = x_i + \delta x_{\text{dist}}, y'_j = y_j + \delta y_{\text{dist}}, z'_k = z_k + \delta z_{\text{dist}})$ 3. $(\delta x_{\text{corr}} \delta y_{\text{corr}}, \delta z_{\text{corr}}) = \text{GetCorrection}(x'_i, y'_j, z'_k)$ 4. $(x''_i = x'_i + \delta x_{\text{corr}}, y''_j = y'_j + \delta y_{\text{corr}}, z''_k = z'_k + \delta z_{\text{corr}})$ 5. $\text{errDistCorr}_{i,j,k} = \frac{\sqrt{(x_i - x'_i)^2 + (y_j - y'_j)^2(z_k - z'_k)^2}}{3}$
- We also collected individual difference in $r, r\phi, z$ direction.

Experiment 1

Input

Space charge distribution as follows:

・ロト・西ト・田・・田・・日・ うんぐう

18/24

- Boundary values zeros
- Granularity: $129 \times 129 \times 144$

Distortion and Correction Map (1)

Correction Map

Distortion Map

Distortion and Correction Map (2)

Distortion and Correction Map (3)

Error Dist-Corr Z, Phi (129,129,144)

Error Dist-Corr R,

<ロト<</th>・< 置ト<</th>三つ<</th>23/24

Correctness Testing

Use a pair of known distribution for potential and charge.

- Compare to ANSYS/Garfield.
- Work in progress.

Thank You

