
Reconstruction in Run 2
status and plans

26/11/2015, R.Shahoyan

1

2
Memory consumption

Tests on the heavy LHC11h chunk

Now we are here

Last results obtained with modified code (next slide) + moving TPC RecPoints
creation to separate aliroot session before rec.C execution (Peter)

“OLD” means situation in September 2015

3
Changes for memory reduction (ALIROOT-6411)

 Friend Tracks preparation modified:

 No cloning of TPC calibration objects/friends: only pointers are reassigned

 Friends for all tracks were stored: huge overhead from unused friend tracks

(e.g. pile-up): now by default at most 3000 tracks will have friends, priority

given to:
 ITS & TPC &OuterDetectors

 ITS &TPC & {TRD || TOF}

 ITS &TPC

 ITS_SA

 If AliESDfriend prescaling is requested:

 Decide in advance if friends for given event will be stored and fill it

 For events w/o friends used dummy ESDfriend, don’t delete main one

 Many optimizations in ITS, TPC, TRD code:

 TPC seed size reduced (8.4kB → 3.5kB), seeds pool usage extended to

KinkFinder too.

 Cluster containers, pools for large repetitive memory allocations

 Reduction of memory thrashing by allocating on stack rather than on the

heap (option to increase aliroot stack)

 HLT memory optimization (Mattias)

 Discard TPC clusters from apparent pile-up (wrong CE side with 3 cm margin)

https://alice.its.cern.ch/jira/browse/ALIROOT-6411

4

Prospects for further memory reduction

 Most of hotspots in TPC:

 cluster containers use ~200MB just on pointers + navigation indices

~ 100 MB can be recovered

 CalibDB: preloads ~200MB of OCDB objects, regardless on their need

(the same feature shared by TRD)

⇒ possibility of objects size reduction / selective uploading should be

studied by detector experts

 Multiple up to 10-20 MB savings possible with difference of code reshuffling

Worth to spend time on this only if current

memory consumption appears still to be too high.

5
CPU consumption

Tests on the same heavy LHC11h chunk

Gain of ~20% as by-product of memory optimization
+ substitution of TPC “FastMath” by standard one (Giulio)

6CPU consumption
Example of 400kHz LHC15g data

Hot spots for high-multiplicity data

~20% : material budget query via Tgeo.

Should be substituted (at least in all queries except for final fits) by fast lookup tables.
Ultimately, if we succeed to use LUTs everywhere, we don’t need to keep geometry in
the memory but to only fetch the matrices.

Development relevant also for O2

7CPU consumption
Example of 400kHz LHC15g data

Hot spots for high-multiplicity data

~18% : TPC dE/dX evaluations: multidimensional Gaussian convolutions.

Can we consider faster, even if less precise algorithm? To be discussed with TPC

8CPU consumption
Example of 400kHz LHC15g data

Hot spots for high-multiplicity data

~15% : cluster raw to coordinates conversion + corrections
Currently AliTPCComposedCorrection is used: ~6µs/cluster
Once the new distortion correction framework is in place, one single correction via
AliTPCChebCorr will be applied:
Speed for “standard” corrections (a la Run1, no “SCD”) < 1µs/cluster
With observed SCD speed depends on the smoothness of the underlying distortions,
was ~2 µs/cluster for not particularly smooth map.

9CPU consumption
Example of 400kHz LHC15g data

Hot spots for high-multiplicity data

~8% : B-field and its integrals (for TPC) calculation

 For ITS constant field should be used (and was at some time)

 Outside of ITS, for preliminary navigation (seeding, rough extrapolations) fast HLT-
like parameterization (R-dependent) should be used: corresponding switch will be
added to AliMagF

 3D B-field calls are largely abused: there is no point in propagating on short
distances with 3D field even for the final fits
⇒ partially fixed in feature-devcalib branch

TPC distortions

On the description / extraction of SC distortions see Marian’s slides on Tuesday: 1, 2

Framework for distortions correction:

The final distortions maps for time-slices of ~30 min will be packed to Chebyshev
polynomials (AliTPCChebCorr) parameterizations as OCDB objects
(~2-3MB per slice, if maps provided from CPass0 are smooth)

TPC tracking code was modified to be able to correct for large distortions
 Override all corrections by single AliTPCChebCorr parameterization
 Mechanism for uploading time-dependent correction maps and interpolating between

pair of nearest time-slices
 Evaluate cluster (seeding, fits) not at the nominal pad-row X but at real corrected X
 Account for dead zones modifications due to the distortions
Code is in feature-devcalib, once the maps are ready, will be merged to master

10

Before
correction

After
correction

(incomplete)

R

Sector

R

Sector

https://indico.cern.ch/event/460232/session/8/contribution/57/attachments/1193390/1732937/presentationTPC_LIPI_Offline_11_2015.pdf
https://indico.cern.ch/event/460232/session/8/contribution/58/attachments/1193414/1733013/go

TPC cluster usage by non-pile-up (TOF BC=0 selected) tracks

Not all holes closed (e.g. clusters recovered): reconstruction for
distortions extraction used insufficiently relaxed tracking tolerances (fixed)

12
Test on 400 kHz IR run 233678

Correction framework works: comparing standard reconstruction with
reconstruction using new correction:

ITS Matching rate for triggered BC increases by ~60%

N TPC clusters per track also increases

Note: ITS-matching was affected not only by the TPC track loss due to the distortions
but also by wrong extrapolation from TPC to ITS

TPC distortions in MC

Distortions lead to cluster losses in dead zones
between the sectors

⇒ distorting in MC and correcting in reconstruction
is NOT equivalent to recovering “no-distortions”
scenario (even modulo residual mis-calibrations)

Proper cuts should be applied in the analysis to account
for modifications of dead zones.

Framework is prepared (in feature-devcalib)

(but not yet fully tested due to the absence of the maps)

 AliTPCChebDist (~ inverse of AliTPCChebCorr) will override all distortions
applied currently in the MC

 MC events are simulated with the real time stamp from GRP, every MC chunk is
generated with ordered time-stamps covering full run range

 The luminosity decay at the moment is accounted by exponential dumping of event
probability vs time
(decay time provided as parameter, eventually can be extracted from OCDB)

13

14

Including TRD into the tracking

Task was paused after realizing that the showstopper is the TPC calibration
(even w/o SC distortions…)

The prerequisite (both for TRD in tracking and TPC calibration):
<200μm global alignment of ITS, TRD and TOF w/o using TPC in the fits is fulfilled

TRD <residuals> per chamber: before, after alignment

rϕ Z rϕ Z

TOF <residuals> per strip: before, after alignment

ITS Lr6 residuals per module: before, after alignment

rϕ Z

ITS Lr5 residuals per module: before, after alignment

rϕ Z

LHC15f

https://indico.cern.ch/event/400521/session/4/contribution/22/attachments/802143/1099352/alignment.pdf

15Including TRD into the tracking

Still to do (after solving TPC distortions problem):

 TRD ExB calibration is currently tuned on the MC with ad-hoc factors

 The position and error assignment for pad-row crossing TRD tracklets is
unsatisfactory (wrong?)

 The tracklet reconstruction part of the code is unmanagable

While including TRD with current status in tracking already will improve the pT
resolution, to achieve the best result the data-driven calibration coupled to alignment
should be performed within Millepede framework.

⇒ need an interface for TRD calibration TOF for Millepede

On global scope:

In Run3 TRD will use directly online-tracklets for reconstruction

The work on corresponding tracker started but at the moment is suspended

⇒ the aim should be to rewrite current TRD tracker in such a way that it serves as
prototype for O2 and still can be used in Run2

16Vertexing

Currently we use:

 in Pb-Pb: “old” vertexer (only 1 “primary” vertex is reconstructed)
 in p-p and pA: “multi-vertexer” (able to reconstruct also pile-up)

Both are relying on the same fitting routine, slow and not well adapted
to Alice track model

Implemented for the HLT ITS-SA
tracking/vertexing component:
 more efficient and precise vertex fitter
 the logics of outliers rejection in vertex

search improved (though no search for
multiple vertices is performed in the HLT))

This should evolve to new vertexer with
better pile-up tagging capabilities (Bayessian logics accounting for IR and BC filling)

