
Overview and Status for
ATLAS Phase I Software

Upgrades
Graeme Stewart

2015-12-01
1

Processor Evolution
• Moore’s Law continues

• Doubling transistor density every
~24 months

• Exact doubling time has a
significant effect when
integrated (especially for Phase
II)

• Clock speed stalled ~2005
• Single core performance is

essentially also stalled
• Driven now by energy performance

• Figure of merit is nJ per
instruction

• Mobile devices and data centres
are the key volume markets

Moore's
Law

Clock
Speed

Charles Leggett, LBL

New NERSC machine room at LBNL
2

HEP and Modern
CPUs

• Away from the detector itself we are firmly Commodity Off The Shelf (COTS)
• Doubling transistor density does not double our computing throughput

• On the die we have more and more cores
• Lower memory per core
• Larger caches, but with decreasing payoffs
• Wide vector registers
• Built in ‘specialist’ features, e.g., integrated GPUs in Intel Skylake
• Integrated network controllers — more System on a Chip (SoC)

• None of these features are trivial to take advantage of in our code
• Our frameworks and algorithms written for an earlier era of hardware and are hard to

adapt
• We also need to factor in the real cost of a server — less improvement than a CPU

• Plus disk, tape, and network evolution (though I shall not cover these here)

3

Run2: AthenaMP
• Multi-processing

with copy on write
(AthenaMP) is
serving ATLAS well
in Run2, but we
don’t expect this to
scale for Run3

• Need a multi-
threading solution
— genuine memory
sharing, with all its
known advantages
and problems

4

Memory
Saving

Digitisation Reconstruction

Future Framework
Requirements

• Design study reported end of 2014 on the requirements for a Run3
framework
• Multi-threading a key requirement
• Additional motivation was better integration with the ATLAS trigger

• In particular support for partial event processing in regions of
interest
• Current solution is not ideal and prevents easy utilisation of

offline algorithms
• Easier use of offline algorithms directly in the trigger one of the

things we will need for Run3 — maintain trigger’s rejection/selection
power at higher pile up and L1 rates

5

Framework Evolution
• Many ideas and concepts stay the

same
• Mature model of event

processing already
• Evolve towards concurrency
• Support HLT usecases

• Best fit to the requirements was to
evolve the Gaudi framework

• Beneficial collaboration with
LHCb, SFT and FCC

• New ATLAS framework will be
AthenaMT

6

Run3 multi-threaded reconstruction cartoon: Colours
represent different events, shapes different algorithms; all

one process running multiple threads

Services
Services

Services

Alg

Initialisation

Services

Alg

Alg

Alg

Alg

ToolTool

Tool

Tool

Finalisation

Tool

Schedulable
Incident

Tool
Schedulable

Incident

Scheduler

Alg

Alg

Key Concept
Changes

• Data dependencies are explicit and visible
• Happen via the whiteboard

• Conditions data is just data, retrieved in advance of running an algorithm
• Scheduler will parallelise algorithms and events when possible (subject to constraints)
• Scheduler handles non-event work

• e.g., Incidents, if still necessary, become ‘tasks’
• Algorithms and tools are event specific

• Tools are always private
• Use only the whiteboard for inter-algorithm communication
• Use sequences for algorithms that create, modify, modify (+done) a data object

• Services are global - must be aware of context when called from algs and tools
• Also need to be thread safe — trickiest elements to program

7

Event Views

• Multiple seeds from L1
• In order to minimise investment in rejected events (99%) only

consider restricted data in each trigger chain
• Do this by creating a view for each region of interest
• Algorithms will run on each RoI that interests them (generally, >1)

8

Muon pt >
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

✘
Alg Alg

Muon pt >
6GeV

✔ ✘

Muon pt >
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

Alg Alg

Muon pt >
6GeV

✔ ✔

✘

Dynamic Scheduler
Extension for Views

• At certain points in the
graph, allow the
dynamic extension with
a known sub-graph
connected to a view

• Allows for a single
scheduler

• Optimises throughput
through consumption
analysis

• Clearly more
prototyping needed

9

Base Event Scheduler

Dynamic sub-graph

Dynamic sub-graph

Control FlowControl Flow

Control FlowControl Flow

Data Interactions
• Our code, by and large, is all about data interactions

• Complexity of the workflow is defined by which pieces of data interact via algorithms
• Current serial implementation allows may avenues for data to interact

• White board, public tools, cached variables, etc.
• Makes scheduling hard and gives rise to data races

• Data handles are an abstract way for algorithms and tools to interact with the event store
• Handles allow for automatic declaration of data dependencies to the scheduler

• Note this percolates from algorithm to tool to tool, etc. (very common design pattern in
ATLAS to delegate work to a chain of tools)

• Abstract away from specifics of the event store and treat data (handle) with OO semantics

• New implementation will allow for const	
 execute() algorithms

• This pattern is the most beneficial for the new framework
• Allows execution on multiple events with minimum memory consumption

• const declaration allows for smart compile time checks

10

Design and
Implementation

• Design and implementation methodology is agile
• Maximise flexibility
• Rapid feedback between design and implementation
• Resist over-designing for imagined use cases

• Thus we have some early implementations to
• Prove tangibly the approach is correct
• Uncover issues early that require re-design
• Test different prototypes when alternatives exist

11

12 Charles Leggett, LBL

G4Hive
• Attempt to get multiple G4 events running on different threads, controlled by Gaudi

scheduler
• Strong motivation is Phase II Cori machine at NERSC and other HPCs
• 9300 Knights Landing machines (670 000 cores)

• This has been a very instructive exercise
• Sensitive detector classes needed a new implementation to support on

demand creation per thread
• User actions required considerable refactoring and lots of tedious recoding
• I/O system turned out to have many assumptions about serial processing built

in (see previous slide on i/o)
• Teaching us about the balancing act between hacked solutions and over elaborate

designs — focus on the actual problem!

13

Parallel
Tracking?

• One way to overcome an expensive set of algorithms is just to throw more events into flight
• But at some point we are going to run out of memory again

• So we really want to open up parallelism within algorithms
• But actually, tracking is one of the most serial pieces of code we have

• Clever serial design to battle n! combinatorics
• Ambiguity solver (crudely) picks good tracks one at a time and removes hits

• We can foresee some improvements to our current model
• Try parallel track seeding and fitting
• We have an idea for a pattern where a serial tool is run in parallel over a container by the

framework
• But maybe we just need to do something entirely new (e.g., Data Science machine learning

workshop last month)
• For Run4?

14

Code Review
• To try and understand where we are with the algorithmic code we will

undertake a software review next year
• A high level review of subsystem code

• What’s the design…? (Is there a design…?)
• Obstacles to threading?
• Opportunities for parallelism?

• Much benefit in asking sub-systems to prepare this material — oblige
people to put on their ‘design goggles’

• Make them aware of challenges of the new framework
• Opportunity for reviewers to learn from a different area of the software

• Outcome may well be just start over — e.g., MuGirl algorithms and Simulation
infrastructure rewrite

15

Timeline and Goals

16

• Now->2016
• Deliver core framework with most functionality

enabled

Dates Framework Algorithmic Code

2015 Baseline Functionality Very few algorithms, concentrate on high inherent
parallelism; general clean-up

2016 Most functionality available (including
views)

Wider set, including CPU expensive algorithms with
internal parallelism; continue clean-up/prep; first

trigger chains

2017 Performance improvements and final
features Migration starts with select groups

2018 Performance improvements Start bulk migration

2019 Bug fixes Finish bulk migration

2020 Bug fixes Integration

Summary
• Phase I Software Upgrade is underway

• We know what we want to achieve
• Already substantial progress in many areas

• Effort to work on core framework is identified already
• Investment in tools and tests will pay off handsomely
• And we also need to train the development community

• Very healthy revival of Gaudi as a community effort
• Particularly helpful discussions with LHCb

• Have started to seriously think about what the algorithmic code should look like for Run3
• There will be a lot of code we need to rewrite
• Important to start discussions with reco, sim and analysis groups to shape the new

framework and the new interfaces properly
• Code review will help us to understand and evolve today’s code

• And provide good examples for the community

17

Gene Amdahl — pioneer
of understanding parallel

computing

