The Jiangmeng Underground Neutrino Observatory (JUNO)

Alberto Garfagnini

Università degli studi di Padova

Antwerpen, Nov 19, 2015

Neutrino Mixing Neutrino Mixing Nowadays

Open questions in neutrino physics

- What is the correct mass hierarchy :
- \checkmark Normal Hierarchy \equiv versus Inverted Hierarchy \equiv
- \bullet Is there a CP violation in the neutrino sector ? (e^{-iδ}) $\sum_{i=1}^{n}$ there are any CP violation in the neutrino sector () $\sum_{i=1}^{n}$ there are any CP violation in the neutrino sector () is the neutrino sector () in the neutrino sector () is the neutrino sec
- **► Is there new physics beyond the three neutrino model?**

$$
|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1
$$
 (PMNS Unitarity) ?

$$
\Delta m_{13}^2 + \Delta m_{21}^2 + \Delta m_{32}^2 = 0 ?
$$

- Can we use neutrinos as messengers to understand our Universe?
- \checkmark look inside the core-of a collapsing Supernova
- \checkmark look at the Earth's composition (Mantle & Core)

The JUNO approach: detect reactor $\overline{\nu}_e$

A. Garfagnini (UniPD) [The JUNO Experiment](#page-0-0) Antwerpen, Nov 19, 2015 4 / 44

Reactor neutrinos Antineutrinos From Reactor

Nuclear Power Plants

- uclear Power Plants
✓ produce energy by breaking heavy nuclei **Energy by the symbols**
- ✓ fission fragments are unstable Fission fragments are unstable
- ✓ main production mechanism: beta decay a cascade of beta decays

 $n \rightarrow p + e^- + \overline{\nu}_e$
 \therefore 2 CM reseter.

➜ 3 GW reactor : [∼] ¹⁰²⁰ ^ν*e*/^s 3 GW reactor : ~1020 ϵ ^{*s*}

Detection mechanism ✓ Inverse Beta Decay : but traveling, $\overline{\nu}_e$ oscillate ... $\overline{\nu}_e + p \rightarrow e^+ + p$ $e^+ + e^- \rightarrow 2\gamma$ captured on H or Gd

Reactor $\overline{\nu}_e$ survival probability

$$
P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - (P_{31} + P_{32}) - P_{21}
$$

= $1 - \sin^2 2\theta_{13} \cdot \sin^2 (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$
 $- \sin^2 2\theta_{12} \cdot \cos^4 \theta_{13} \sin^2 \Delta_{21}$

Ideal Oscillated Spectrum

A. Garfagnini (UniPD)

Antwerpen, Nov 19, 2015 [The JUNO Experiment](#page-0-0) Antwerpen, Nov 19, 2015 7/44

Determine Mass Hierarchy with Reactors

Spectrum at 50 km baseline

- 0 km baseline √ precision energy spectrum measurement
- $\sqrt{\frac{1}{2}}$ interference between P_{31} and P_{32}
	- \rightarrow relative measurement
	- \checkmark further improvements with $\Delta^2_{\mu\mu}$

 \checkmark constraint from accelerator experiments

→ absolute measurement

$$
\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2 \,.
$$

 $|\Delta m_{ee}^2| - |\Delta m_{\mu\mu}^2| \;\; = \;\; \pm \Delta m_{21}^2(\cos 2\theta_{12} - \sin 2\theta_{12} \sin \theta_{13} \tan \theta_{23} \cos \delta)$ and μ . The inverted MH.

Requirements

- ✓ Baseline : 45 60 km ± 45 - 60 km signs correspond to normal and inverted MHs, respectively. The normal and in
- √ Energy resolution : 3% at 1 MeV $\frac{1}{28}$ at 1 MoV. T_{tot} and ϵ 1.60 metric two types of information (interference and precision (interference and precision and precision and precision μ
- \checkmark Large active mass : 20 kton \times 35 GW \times 6 yr = 100 k events

Location of The Baseline

The JUNO Detector

- ✓ 20 kt Liquid Scintillator
- LAB based scintillator in a 35 m diameter Acrylic Sphere
- ✓ 18000 20" high-QE PMTs
- 75-80% coverage
- ✓ water buffer
	- mitigate PMT radioactovity
	- suppress fast neutrons
- \checkmark Water Cherenkov (μ VETO)
	- 200 PMT in ultrapure water
- \checkmark TOP tracker (μ tagger)
- plastic scintillator (from OPERA Target Tracker) re
:R*f*
- ✓ 700 m rock overburden
	- shallow underground site

JUNO CDR arXiv:1508.07166

JUNO Mass Hierarchy Sensitivity

→ 6 years of data taking (100 k $\overline{\nu_e}$ IDB events collected)

- 3σ with the spectrum measurement
	- 4σ with external input of |*ΔM2 μμ|*

Precision measurements

- ✓ JUNO will allow to probe the *UPMNS* unitarity down to 1%
- \rightarrow it will be more precise than the CKM matrix elements!

Supernova Neutrinos

✓ less than 20 events observed so far

Assumptions

- **→ distance : 10 kpc (our Galaxy center)**
- \rightarrow energy : 3×10^{53} erg
- L_{ν} the same for all types

Supernova Neutrinos in JUNO **Supernova Neutrinos**

Events for different $\langle E_\nu \rangle$ values Channel Type 12 MeV 14 MeV 16 MeV $\overline{\nu}_e + p \rightarrow e^+ + n$ \overline{cc} 4.3×10^{3} 5.0×10^3 5.7×10^{3} NC 6.0×10^2 1.2×10^3 2.0×10^3 $\nu + p \rightarrow \nu + p$ $3.6\times10^{2}\qquad \ \, 3.6\times10^{2}$ $\nu + e \rightarrow \nu + e$ NC 3.6×10^2 $\nu + {}^{12}\text{C} \rightarrow \nu + {}^{12}\text{C}^*$ NC 1.7×10^2 3.2×10^2 5.2×10^{2} $\nu_e + {}^{12}C \rightarrow e^- + {}^{12}N$ CC 4.7×10^1 9.4×10^1 1.6×10^2 $\overline{\nu}_e + {}^{12}\text{C} \rightarrow e^+ + {}^{12}\text{B}$ CC 6.0×10^{1} 1.1×10^2 1.6×10^{2}

$Estimated$ numbers of neutrino events in $JUNO$

LS detector vs. Water Cerenkov detectors: much better detection to these correlated events

 → Measure energy spectra & fluxes of almost all types of neutrinos

- \bullet v mass: \leq 0.83+0.24 eV at 95% CL (arXiv:1412.7418)
- \triangleleft Locating the SN: ~9°
- Pre-SN v (> 1 day)
- SN Nucleosynthesis via v_r spectra
- ! Collective ν oscillation
- \bullet MH

Mass Hierarchy from ν_{atm}

- \triangle Due to matter effect, oscillation probability of atmospheric muon neutrino when passing the Earth depends on mass hierarchy
- \blacklozenge JUNO will have 1-2 σ sensitivity. \Rightarrow Measure both lepton and hadron energy \Rightarrow Good tracking and energy resolution

Geo neutrinos in JUNO **Geo-neutrinos**

! **Geo-neutrinos**

\Rightarrow Current results

 KamLAND: 30±7 TNU *(PRD 88 (2013) 033001)* Borexino: 38.8±12.2 TNU *(PLB 722 (2013) 295)* Statistics dominant

- \Rightarrow Desire to reach an error of 3 TNU
- \Rightarrow H_{NO}: \times 20 statistics
	- Huge reactor neutrino backgrounds
	- Need accurate reactor spectra

Combined shape fit of geo-ν **and reactor-**ν

Solar neutrinos and other physics **Solar and other Physics**

The JUNO Central Detector

Specs

- **→ Target Mass: 20 kton LS Central detector**
- → BKG/Signal : accidentals (10%), ⁹Li/⁸He $(< 1\%)$, fast neutrons $(< 1\%)$

A Huge Detector in a Water Pool

 \rightarrow Acrylic Tank (35 m) + Stainless Steel Truss rior yn trans (oo hij 1 Giannoso Gioon

Challenges

→ Engineering : mechanics, safety, lifetime, ...

- \rightarrow LS : high transparency, low background
- \rightarrow PMT : high QE, large coverage PMI: nign

Design and Prototyping underway

The Liquid Scintillator

Recipe

- \rightarrow LAB + PPO + bisMSB
- \rightarrow no Gd loading

Liquid Scintillator L2: G.Ranucci (IT)

Increase Light Yield

 \rightarrow optimization of flourine concentration

Increase Transparency

- **→ good raw solvent : LAB**
	- **→** improve production process
- \rightarrow online handling/purification
	- \rightarrow distillation, filtration, water extraction, nitrogen stripping, . . .

Reduce Radioactivity

- \rightarrow less risky, no Gd
	- \rightarrow intrinsic single rates : $<$ 3 Hz (above 0.7 MeV) if 40 K/U/Th < 10^{-15} g/g

Linear Alkyl Benzene \vert Att. Length

SiO₂ column

JUNO LAB Characterization measurements

The JUNO Photo Multiplier Tubes Photo Multiplier Tubes

- → large (20") PMTs are mandatory to achieve a 75% photo-coverage
- → R&D to develop high efficiency PMTs ongoing in China

20" Hamamatsu PMT Dynode Ellipsoidal Glass

20" IHEP MCP-PMT Vertical MCPs Sphere Glass

20" IHEP MCP-PMT Horizontal MCPs Ellipsoidal Glass

The JUNO PMT R&D Program

New HQE PMT results

- A new design of using MCP
	- \cdot 4 π collection, under development
	- Technical issues mostly solved, successful 8'' and 20'' prototypes.
- Alternative options: Hamamatsu or Photonics
- **News from 20'' MCP-PMT:**
	- **Quantum Efficiency ~ 25% @ 410nm**
	- **Collection Efficiency ~ 100%**

PMT tender procedure started, to be completed end 2015

A. Garfagnini (UniPD) [The JUNO Experiment](#page-0-0) Antwerpen, Nov 19, 2015 24 / 44

The JUNO Large PMT Electronics

Electronics & Trigger L2: A.Stahl (DE)

Requirements

- \rightarrow all PMT FE electronics will be underwater
- \rightarrow 20 years livetime
- \rightarrow no access possible after installation

Under water

- ➜ [∼] 18000 PMTs (Central Detector) + [∼] 2000 PMTs (Water Cherenkov)
- **→ PMT High Voltage**
- \rightarrow FE electronics : signal amplification, ADC, digital processing and data reduction, trigger and digital data transmission

Above water

→ DAQ back-end electronics, global trigger electronics, low voltage, clock & control and online DAQ farms

JUNO PMT Underwater Electronics

High Voltage

- **→ baseline option : custom Cockcroft-Walton** multiplier : convert AC low voltage to DC high voltage
- \rightarrow commercial system as backup option

Front End Card

→ two ASICs developements in Europe and China

Analog to Digital Unit

→ two ASICs developements in Europe and China and possible usage of commercial ADCs

Global Control Unit

→ INFN strong interest (possible industrial partnership with R&D common program) and Chinese option

Multiplexer

 \rightarrow European and Chinese options under investigation

Large PMT electronics responsabilities

The Calibration system

- Point radioactive source calibration systemx : calibration systems $\sqrt{}$ an automatic rope system is the primary course. is the primary source the most primary source delivery system delivery system ✓ a ROV is more versatile \checkmark a guide tube system covers the boundaries and covers are boundaries and
near boundary regions \checkmark considering short-lived diffuse radioactive sources to calibrate the detector response α NOV to be more versame stem to concern y regions
	- √ a UV laser system is being designed to calibrate the LS properties *in situ*

Pelletron as a positron beam calibration source

- **► Mature technology and commercially available:**
	- \checkmark is a positron gun to shoot positrons directly in the JUNO LS:
	- \checkmark energy coverage: 0.5 6.5 MeV, uncertainty < 10⁻⁴
	- \checkmark can shoot both electrons and positrons and below 5 MeV cheaper than LINAC
	- energy can be calibrated with a dedicated system (Ge detector) to 0.1% level
	- \checkmark excellent energy stability. Super-K LINAC e-beam calibration reached 0.6% absolute energy scale uncertainty

Bauer et al. The Stuttgart positron beam, its performance and recent
experiments. NIM B50. 300 (1990)

 p_{max} (cm, ω)

Backgrounds in JUNO

- $\bullet\bullet$ expected IBD signal rate: \sim 40 60 events/day
- expected backgrounds
	- ✓ accidentals
	- ✓ fast neutrons
	- ✗ cosmogenic ⁹Li/ ⁸He production

Rock overburden: 700 m < *^E*^µ >[∼] 200 GeV $<$ R_μ $> \sim$ 3 − 4 Hz

- ✓ accidentals will be reduced thanks to reduced PMT radioactivity and LS purification
- \checkmark high muon detection efficiency is important for fast neutrons
- \checkmark the biggest background contribution comes from cosmogenic $9Li/8He$ muon tracking in JUNO (Central Detector and VETO detectors) is a key element

The VETO system in JUNO

- the VETO system is an outer detector providing information to understand the cosmogenic background. It's made of:
- a Water Cherenkov

VETO L2: M.Dracos (FR)

- ✓ a Top Tracker
- ✒ simulation and design studies are on going in order to optimize the design. Several options for the Top Tracker are being considered:
	- \checkmark the OPERA Target Tracker (scintillator bars) will be moved to JUNO
	- \checkmark other detectors technologies are under investigation

 α understand remove comogenic backgrounds convention α

A. Garfagnini (UniPD) a vector is not information to the JUNO Experiment

Muon Veto : Top tracker

- \checkmark use plastic scintillator walls from the OPERA Target Tracker (TT)
- \checkmark module area : 7×7 m2
- √ aim : good muon tracking and gamma rejection (from rocks radioactivity)
- → OPERA TT modules not enough to cover the whole JUNO surface

The JUNO Multi-calorimetry approach

Dynamic Range with L-PMT and s-PMT

dynamic range to detector →stochastic resolution: **a~10%** →s-PMT resolution for SN: ~3% (!!) •**L-PMT focus on high precision** (high FADC sensitivity) on **IBD** (+SN) physics →stochastic resolution: **a~3%** •**complementarity over all dynamic range:** different saturation (s-PMT→negligible?), different life-time, different

analogue Front-End (ringing after μ's, etc), etc

cartoon of muons deposition… (even worse)

The JUNO International Collaboration

Only two US groups are participating 23 european institutions: 1 in Belgium, 5 in France 55 member institutes equally shared between Asia and Europe

The JUNO International Collaboration

L2 coordinators

✓ Civil, Central Detector, Veto (M.Dracos, FR), Liquid Scintillator (G.Ranucci, IT), MCP-PMT, PMT, 3" PMT (A.Cabrera, FR), Electronics & Trigger (A.Stahl, DE), Calibration, Integration, DAQ & Slow-Control (Y.Yang, BE), Offline & Computing

JUNO Civil Construction

JUNO Schedule

JUNO Competitors

Different approaches to measure the Mass Hierarchy

- \checkmark medium baseline reactor $\bar{\nu}_e \to \bar{\nu}_e$ oscillation experiments: JUNO, RENO-50
- \checkmark long-baseline accelerator $\nu_\mu \to \nu_e$, $(\overline{\nu_\mu} \to \overline{\nu_e})$ oscillation experiments: T2K, No ν A, DUNE, Hyper-K
- \checkmark atmospheric $\nu_\mu \to \nu_e$, $(\overline{\nu_\mu} \to \overline{\nu_e})$ oscillation experiments: INO, PINGU, ORCA, DUNE, Hyper-K
- ✓ The first method (reactors at a medium baseline) relies on the oscillation interference between Δm_{31}^2 and Δm_{32}^2
- \rightarrow no dependences on : δ_{CP} , θ_{23} or 3 versus 4 oscillation pattern
- \checkmark accelerator and atmospheric neutrino experiments depend on the matter effect in neutrino oscillations
- **→** sensitivity depends strongly on δ_{CP} degeneracy and 3 versus 4 oscillation pattern

A. Garfagnini (UniPD) [The JUNO Experiment](#page-0-0) Antwerpen, Nov 19, 2015 40 / 44

Sensitivity to the NMH for various techniques

Sources: arXiv:1311.1822, arXiv:1401.2046v1, arXiv:1406.3689v1, Neutrino 2014, LBNE-doc-8087-v10

Conclusions

- ✓ JUNO has been approved in February 2013 with a 300 M\$ budget
- \rightarrow the physics reach is very broad : the first general-purpose neutrino detector (?)
- \rightarrow several challenging issues have to be faced
	- ... but preparation proceeds at high speed
		- **→** well defined detector R&D program
		- **→ CDR and Yellow Book of Physics published in arXiv**
		- \rightarrow groundbreaking cerimony on January 10th, 2015. Civil construction will be completed in three years
- $\sqrt{\ }$ a strong international collaboration is rapidly growing
- \rightarrow a new era of high precision neutrino physics is about to begin

Reserve Slides

A. Garfagnini (UniPD) [The JUNO Experiment](#page-0-0) Antwerpen, Nov 19, 2015 43 / 44

JUNO backgrounds

