The Jiangmeng Underground Neutrino Observatory (JUNO)

Alberto Garfagnini

Università degli studi di Padova

Antwerpen, Nov 19, 2015

Neutrino Mixing

Open questions in neutrino physics

- What is the correct mass hierarchy :
- ✓ Normal Hierarchy <u></u> versus Inverted Hierarchy <u></u>
- Is there a CP violation in the neutrino sector ? $(e^{-i\delta})$
- Is there new physics beyond the three neutrino model ?

$$|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1$$
 (PMNS Unitarity) ?

$$\Delta m_{13}^2 + \Delta m_{21}^2 + \Delta m_{32}^2 = 0$$
?

- Can we use neutrinos as messengers to understand our Universe ?
- ✓ look inside the core of a collapsing Supernova
- ✓ look at the Earth's composition (Mantle & Core)

A. Garfagnini (UniPD)

The JUNO approach: detect reactor $\overline{\nu}_e$

A. Garfagnini (UniPD)

The JUNO Experiment

Antwerpen, Nov 19, 2015 4 / 44

Reactor neutrinos

Nuclear Power Plants

- produce energy by breaking heavy nuclei
- fission fragments are unstable
- ✓ main production mechanism: beta decay

 $n \rightarrow p + e^- + \overline{\nu}_e$

→ 3 GW reactor : $\sim 10^{20} \ \overline{\nu}_e/s$

A. Garfagnini (UniPD)

Reactor $\overline{\nu}_e$ survival probability

$$P(\overline{\nu}_{e} \to \overline{\nu}_{e}) = 1 - (P_{31} + P_{32}) - P_{21}$$

= $1 - \sin^{2} 2\theta_{13} \cdot \sin^{2} \left(\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}\right)$
 $-\sin^{2} 2\theta_{12} \cdot \cos^{4} \theta_{13} \sin^{2} \Delta_{21}$

A. Garfagnini (UniPD)

Ideal Oscillated Spectrum

A. Garfagnini (UniPD)

Determine Mass Hierarchy with Reactors

- ✓ precision energy spectrum measurement
- ✓ interference between P₃₁ and P₃₂
- → relative measurement
- ✓ further improvements with $\Delta^2_{\mu\mu}$
- ✓ constraint from accelerator experiments
- ➔ absolute measurement

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2 \,.$$

 $|\Delta m_{ee}^2| - |\Delta m_{\mu\mu}^2| = \pm \Delta m_{21}^2 (\cos 2\theta_{12} - \sin 2\theta_{12} \sin \theta_{13} \tan \theta_{23} \cos \delta)$

- Requirements ✓ Baseline : 45 - 60 km
 - ✓ Energy resolution : 3% at 1 MeV
 - ✓ Large active mass : 20 kton × 35 GW × 6 yr = 100 k events

A. Garfagnini (UniPD)

The Baseline

	NPP	Daya Bay	Huizhou	Lufeng	Yangjiar	ıg		Taish	an	
	Status	Operational	Planned	Planned	Under constr	uction	Under	cons	truct	ion
	Power	17.4 GW	17.4 GW	17.4 GW	17.4 GV	V	1	1 8.4 (W	
Overburden ~ 700 m			a later		by 20	20: 2	6.6 (βW		
	N.	Carles Pa		Strend A	Previous site ca	andidate			-	X
Kaiping, Jiang Men city, Guangdong Province 2.5 h dri 2.5 m dri 2.		2.5 h drive Martine Martine Zinchas Robus Rate Zinchas Robus Rate Zinchas Robus Rate	Shen Zhen Shen Zhen ty ty war Hong Ko	Kungo Daya Bay NPP ng	Huizhou NPP	LN	ufeng	1		
	To and	53 km	Mac	au 💦 🚽	Cores	YJ-C1 YJ-C2	2 YJ-C3	YJ-C4	YJ-C5	YJ-C6
53 km		\$	Power (GW) Baseline (km)	2.9 2.9 52.75 52.84	2.9 52.42	2.9 52.51	2.9 52.12	2.9 52.21		
Baishan NPP			Cores	TS-C1 TS-C2	2 TS-C3	TS-C4	DYB	HZ		
-	Yangjiang NPP			Power (GW) Baseline (km)	4.6 4.6 52.76 52.63	4.6 52.32	4.6 52.20	17.4 215	17.4 265	

A. Garfagnini (UniPD)

The JUNO Detector

- ✓ 20 kt Liquid Scintillator
- LAB based scintillator in a 35 m diameter Acrylic Sphere
- ✓ 18000 20" high-QE PMTs
- 75-80% coverage
- ✓ water buffer
 - mitigate PMT radioactovity
 - suppress fast neutrons
- ✓ Water Cherenkov (µ VETO)
 - 200 PMT in ultrapure water
- ✓ TOP tracker (μ tagger)
 - plastic scintillator (from OPERA Targ Tracker)
- ✓ 700 m rock overburden
 - shallow underground site

JUNO CDR arXiv:1508.07166

A. Garfagnini (UniPD)

The JUNO Experiment

Antwerpen, Nov 19, 2015 11 / 44

JUNO Mass Hierarchy Sensitivity

→ 6 years of data taking (100 k $\overline{\nu_e}$ IDB events collected)

- 3σ with the spectrum measurement
 - 4σ with external input of $|\Delta M^2_{\mu\mu}|$

	Ideal	Core distr.	Shape	B/S(stats.)	B/S(shape)	ا∆M² _{µµ} ا
Size	52.5km	Real	1%	4.5%	0.3%	1%
$\Delta \chi^2_{MH}$	+16	-4.7	-1	-0.5	-0.1	+8

A. Garfagnini (UniPD)

Precision measurements

- ✓ JUNO will allow to probe the U_{PMNS} unitarity down to 1%
- → it will be more precise than the CKM matrix elements!

	Δm_{21}^2	$ \Delta m_{31}^2 $	$\sin^2 \theta_{12}$	$sin^2 \theta_{13}$	$sin^2 \theta_{23}$	JUNO	Nominal	+ BGB
Exp	KamLAND	MINÓS	SNO	DayaBay	SK/T2K	$\sin^2 \theta_{12}$	0.54%	0.60%
Exp 1 σ	2.7%	4.1%	6.7%	6%	14%	Δm_{21}^2	0.24%	0.27%
Global 1 σ	2.6%	2.7%	4.1%	5%	11%	$ \Delta m_{ee}^2 $	0.27%	0.31%

Supernova Neutrinos

✓ less than 20 events observed so far

Assumptions

- → distance : 10 kpc (our Galaxy center)
- → energy : 3×10^{53} erg
- → L_{ν} the same for all types

Supernova Neutrinos in JUNO

Events for different $\langle E_{\nu} \rangle$ values Channel Type 12 MeV 14 MeV 16 MeV $\overline{\nu}_e + p \to e^+ + n$ CC 4.3×10^{3} 5.0×10^{3} 5.7×10^{3} $2.0 imes 10^3$ NC 6.0×10^2 1.2×10^3 $\nu + p \rightarrow \nu + p$ $3.6\times 10^2 \qquad 3.6\times 10^2$ $3.6 imes 10^2$ $\nu + e \rightarrow \nu + e$ NC $\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$ NC 1.7×10^2 3.2×10^2 5.2×10^2 $\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$ CC 4.7×10^1 9.4×10^1 1.6×10^{2} $\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$ 1.1×10^{2} 1.6×10^2 CC 6.0×10^{1}

Estimated numbers of neutrino events in JUNO

LS detector vs. Water Cerenkov detectors: much better detection to these correlated events

→ Measure energy spectra & fluxes of almost all types of neutrinos

- v mass: < 0.83±0.24 eV at 95% CL (arXiv:1412.7418)
- Locating the SN: ~9°
- Pre-SN v (> 1 day)
- SN Nucleosynthesis via v_x spectra
- Collective v oscillation

MH

Mass Hierarchy from ν_{atm}

- Due to matter effect, oscillation probability of atmospheric muon neutrino when passing the Earth depends on mass hierarchy
- JUNO will have 1-2 σ sensitivity.
 ⇒ Measure both lepton and hadron energy
 ⇒ Good tracking and energy resolution

Geo neutrinos in JUNO

Geo-neutrinos

➡ Current results

KamLAND: 30±7 TNU (*PRD 88 (2013) 033001*) Borexino: 38.8±12.2 TNU (*PLB 722 (2013) 295*) Statistics dominant

- ⇒ Desire to reach an error of 3 TNU
- ⇒ JUNO: ×20 statistics
 - · Huge reactor neutrino backgrounds
 - Need accurate reactor spectra

Source	Events/year
Geoneutrinos	408 ± 60
U chain	311 ± 55
Th chain	92 ± 37
Reactors	16100 ± 900
Fast neutrons	3.65 ± 3.65
⁹ Li - ⁸ He	657 ± 130
${}^{13}C(\alpha, n){}^{16}O$	18.2 ± 9.1
Accidental coincidences	401 ± 4

Combined shape fit of geo-v and reactor-v

	Best fit	1 y	3 у	5 y	10 y
U+Th fix ratio	0.96	17%	10%	8%	6%
U (free)	1.03	32%	19%	15%	11%
Th (free)	0.80	66%	37%	30%	21%

A. Garfagnini (UniPD)

Solar neutrinos and other physics

 Solar neutrino ⇒ Metallicity? Vacuum oscillation to MSW? ⇒ ⁷Be and ⁸B at JUNO ⇒ Threshold ⇒ Backgrounds Liquid Scintillator Mo 10⁻¹⁵ 10⁻¹⁶ 1.4·10⁻²² Borexino CTF, KamLAN D After Distillation 10⁻¹⁷ 10⁻¹⁸ 10⁻²⁴ Sterile v, Indirect dark matter, 						Source	Rate [cpd/1kt]		
$ \Rightarrow \text{ Metallicity? Vacuum oscillation to MSW?} \Rightarrow 7Be and 8B at JUNO \Rightarrow 7Be and 8B at JUNO \Rightarrow Threshold ⇒ Backgrounds \frac{\text{Liquid}}{\text{Scintillator}} \frac{\text{U23}}{8} \frac{\text{Th2}}{32} \frac{\text{K40}}{32} \frac{\text{Pb210}}{(\text{Rn222})} \text{Ref.} \\ \frac{\text{KamLAN}}{\text{D}} \frac{\text{Keject events}}{10^{-15}} \frac{10^{-15}}{10^{-15}} \frac{10^{-16}}{10^{-16}} \frac{1.4 \cdot 10^{-22}}{10^{-18}} \frac{\text{Borexino}}{\text{CTF,}} \\ \frac{\text{After}}{\text{Distillation}} \frac{10^{-17}}{10^{-17}} \frac{10^{-18}}{10^{-18}} \frac{10^{-24}}{10^{-24}} \frac{\text{Borexino}}{\text{CTF,}} \\ \frac{\text{Sterile } \nu, \text{ Indirect dark matter,}}{\text{Sterile } \nu, \text{ Indirect dark matter,}} $	Solar	neut	rino			pp	1337		
$\Rightarrow ^{7}\text{Be and } ^{8}\text{B at JUNO}$ $\Rightarrow ^{7}\text{Be and } ^{1}\text{Be and } ^{1}Be$	⇒ Me	tallicit	y? Va	cuum o	/?	⁷ Be [line 0.384 MeV]	19		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		and 8	- Rat II	INO		'Be [line 0.862 MeV]	475		
$\Rightarrow Threshold \\ \Rightarrow Backgrounds \\ \hline \begin{array}{c} 4.5 \\ 25 \\ 28 \\ 15 \\ 15 \\ 15 \\ 17 \\ 10 \\ 17 \\ 10 \\ 17 \\ 10 \\ 17 \\ 10 \\ 10$		anu		JINO				pep	28
$\Rightarrow Backgrounds$ $\frac{\text{Liquid}}{\text{Scintillator}} \begin{array}{c c c c c c } & 1023 & Th2 & K40 & Pb210 & Ref. \\ \hline Scintillator & 8 & 32 & & & & & & & & & & & & & & & & & $	🖨 Thi	esholo	1					°B 13ar	4.5
Liquid Scintillator $\begin{array}{ c c c } & U23 & Th2 & K40 & Pb210 & Ref. \\ \hline Scintillator & 8 & 32 & & & & & & & & & & & \\ \hline Scintillation & 10^{-15} & 10^{-15} & 10^{-16} & 1.4 \cdot 10^{-22} & Borexino \\ \hline Distillation & 10^{-17} & 10^{-17} & 10^{-18} & 10^{-24} & D \\ \hline \\ \bullet & Sterile v, Indirect dark matter, \\ \hline \\ \end{array}$	🖨 Bac	korou	nds					15N	25
Liquid ScintillatorU23 8Th2 32K40 (Rn222)Pb210 (Rn222)Ref.No Distillation10-15 	, Du	Reiou	nus					1710	28
Scintillator 8 32 (Rn222) No 10 ⁻¹⁵ 10 ⁻¹⁵ 10 ⁻¹⁶ 1.4·10 ⁻²² Borexino CTF, After 10 ⁻¹⁷ 10 ⁻¹⁷ 10 ⁻¹⁸ 10 ⁻²⁴ D Sterile v, Indirect dark matter, M_{10}^{10} M_{10}^{10}	Liquid	1123	Th2	K40	Dh210	Ref		F	0.7
No Distillation 10 ⁻¹⁵ 10 ⁻¹⁵ 10 ⁻¹⁶ 1.4·10 ⁻²² Borexino CTF, KamLAN D 5 σ rejection of dark noise ♦ Sterile v, Indirect dark matter,	Scintillator	8	32		(Rn222)	1.01.	Ē	F	
No 10 10 10 10 10 10 10 10 10 10 10 10 10	No	10-15	10-15	10-16	1 4 10-22	Porovino	2500	Reject events	
After Distillation10-1710-1810-24KamLAN D→ 0.1 MeV threshold◆ Sterile v, Indirect dark matter,	Distillation	10 10	10 10	10 10	1.4.10	CTF.	2000	at the center /	/ \
After Distillation 10-17 10-18 10-24 D threshold 5 σ rejection of dark noise	Distillation					KamLAN		$\rightarrow 0.1 \text{ MeV}$	
 Sterile v, Indirect dark matter, 	After	10-17	10-17	10-18	10-24	D	1500	threshold	
◆ Sterile v, Indirect dark matter,	Distillation					FINIT, \	5σ rejection		
◆ Sterile v, Indirect dark matter,					1000	FINIT.	\of dark noise		
	♦ Steril	e v. T	ndire	ect da					
	Neede	, -				,	500	°E	╹╹╹╹╹╹╹╹╹╹╹╹╹
	INUCIE	on ac	ecay,	etc.					

A. Garfagnini (UniPD)

The JUNO Experiment

2500 totalPE

The JUNO Central Detector

Specs

- ➔ Target Mass : 20 kton LS
- → BKG/Signal : accidentals (10%), ⁹Li/⁸He (< 1%), fast neutrons (< 1%)</p>

A Huge Detector in a Water Pool

→ Acrylic Tank (35 m) + Stainless Steel Truss

Challenges

→ Engineering : mechanics, safety, lifetime, ...

- → LS : high transparency, low background
- → PMT : high QE, large coverage

Design and Prototyping underway

The Liquid Scintillator

Recipe

- → LAB + PPO + bisMSB
- → no Gd loading

Liquid Scintillator L2: G.Ranucci (IT)

Increase Light Yield

→ optimization of flourine concentration

Increase Transparency

- → good raw solvent : LAB
 - ➔ improve production process
- → online handling/purification
 - → distillation, filtration, water extraction, nitrogen stripping, ...

Reduce Radioactivity

- ➔ less risky, no Gd
 - → intrinsic single rates : < 3 Hz (above 0.7 MeV) if ⁴⁰K/U/Th < 10⁻¹⁵ g/g

Linear Alkyl Benzene (LAB)	Att. Length @ 430 nm
RAW	14.2 m
Vacuum distillation	19.5 m
SiO ₂ column	18.6 m
Al ₂ O ₃	25 m

JUNO LAB Characterization measurements

A. Garfagnini (UniPD)

The JUNO Photo Multiplier Tubes

- → large (20") PMTs are mandatory to achieve a 75% photo-coverage
- ➔ R&D to develop high efficiency PMTs ongoing in China

20" Hamamatsu PMT Dynode Ellipsoidal Glass

20" IHEP MCP-PMT Vertical MCPs Sphere Glass

20" IHEP MCP-PMT Horizontal MCPs Ellipsoidal Glass

The JUNO PMT R&D Program

New HQE PMT results

- A new design of using MCP
 - 4π collection, under development
 - Technical issues mostly solved, successful 8" and 20" prototypes.
- · Alternative options: Hamamatsu or Photonics
- News from 20" MCP-PMT:
 - Quantum Efficiency ~ 25% @ 410nm
 - Collection Efficiency ~ 100%

PMT tender procedure started, to be completed end 2015

A. Garfagnini (UniPD)

The JUNO Large PMT Electronics

Electronics & Trigger L2: A.Stahl (DE)

Requirements

- → all PMT FE electronics will be underwater
- → 20 years livetime
- ➔ no access possible after installation

Under water

- → ~ 18000 PMTs (Central Detector) + ~ 2000 PMTs (Water Cherenkov)
- → PMT High Voltage
- → FE electronics : signal amplification, ADC, digital processing and data reduction, trigger and digital data transmission

Above water

→ DAQ back-end electronics, global trigger electronics, low voltage, clock & control and online DAQ farms

A. Garfagnini (UniPD)

The JUNO Experiment

Antwerpen, Nov 19, 2015 25 / 44

JUNO PMT Underwater Electronics

High Voltage

- baseline option : custom Cockcroft-Walton multiplier : convert AC low voltage to DC high voltage
- → commercial system as backup option

Front End Card

→ two ASICs developments in Europe and China

Analog to Digital Unit

→ two ASICs developments in Europe and China and possible usage of commercial ADCs

Global Control Unit

→ INFN strong interest (possible industrial partnership with R&D common program) and Chinese option

Multiplexer

→ European and Chinese options under investigation

A. Garfagnini (UniPD)

Large PMT electronics responsabilities

The Energy Resolution Challenge

The Calibration system

✓ a UV laser system is being designed to calibrate the LS properties in situ

A. Garfagnini (UniPD)

Pelletron as a positron beam calibration source

- Mature technology and commercially available:
 - ✓ is a positron gun to shoot positrons directly in the JUNO LS:
 - ✓ energy coverage: 0.5 6.5 MeV, uncertainty < 10^{-4}
 - ✓ can shoot both electrons and positrons and below 5 MeV cheaper than LINAC
 - $\checkmark\,$ energy can be calibrated with a dedicated system (Ge detector) to 0.1% level
 - ✓ excellent energy stability. Super-K LINAC e-beam calibration reached 0.6% absolute energy scale uncertainty

beam, its performance and recent experiments, NIM B50, 300 (1990)

A. Garfagnini (UniPD)

Backgrounds in JUNO

- expected IBD signal rate: ~ 40 − 60 events/day
- expected backgrounds :
 - ✓ accidentals
 - ✓ fast neutrons
 - x cosmogenic ⁹Li/⁸He production

Rock overburden: 700 m $< E_{\mu} > \sim$ 200 GeV $< R_{\mu} > \sim 3-4$ Hz

- accidentals will be reduced thanks to reduced PMT radioactivity and LS purification
- ✓ high muon detection efficiency is important for fast neutrons
- ✓ the biggest background contribution comes from cosmogenic ⁹Li/⁸He muon tracking in JUNO (Central Detector and VETO detectors) is a key element

A. Garfagnini (UniPD)

The VETO system in JUNO

- the VETO system is an outer detector providing information to understand the cosmogenic background. It's made of:
- ✓ a Water Cherenkov

VETO L2: M.Dracos (FR)

- ✓ a Top Tracker
- simulation and design studies are on going in order to optimize the design. Several options for the Top Tracker are being considered:
 - ✓ the OPERA Target Tracker (scintillator bars) will be moved to JUNO
 - ✓ other detectors technologies are under investigation

A. Garfagnini (UniPD)

The JUNO Experiment

Antwerpen, Nov 19, 2015 32 / 44

Muon Veto : Top tracker

- ✓ use plastic scintillator walls from the OPERA Target Tracker (TT)
- ✓ module area : 7 × 7 m2
- ✓ aim : good muon tracking and gamma rejection (from rocks radioactivity)
- → OPERA TT modules not enough to cover the whole JUNO surface

A. Garfagnini (UniPD)

The JUNO Multi-calorimetry approach

A. Garfagnini (UniPD)

Dynamic Range with L-PMT and s-PMT

 -s-PMT provides natural extension of dynamic range to detector

 →stochastic resolution: a~10%
 →s-PMT resolution for SN: ~3% (!!)

 L-PMT focus on high precision (high FADC sensitivity) on IBD (+SN) physics

 →stochastic resolution: a~3%
 complementarity over all dynamic range: different saturation (s-PMT →negligible?), different life-time, different analogue Front-End (ringing after µ's, etc), etc.

IBD SN μ(→BG) physics physics physics L-PMT data s-PMT data 0 10 100 100 Visible Energy (MeV)

cartoon of muons deposition... (even worse)

The JUNO International Collaboration

55 member institutes equally shared between Asia and Europe
Only two US groups are participating
23 european institutions: 1 in Belgium, 5 in France

A. Garfagnini (UniPD)

The JUNO International Collaboration

Country	Institutions	Members	
Armenia	1	4	
China	25	230	
Taiwan	3	10	
Belgium	1	3	
Czech Republic	1	4	
Germany	6	30	
Finland	1	2	-
France	5	21	FU
Italy	7	45	A.S
Russia	2	32	
Chile	1	3	
USA	2	4	
SUM	55	388	

L2 coordinators

✓ Civil, Central Detector, Veto (M.Dracos, FR), Liquid Scintillator (G.Ranucci, IT), MCP-PMT, PMT, 3" PMT (A.Cabrera, FR), Electronics & Trigger (A.Stahl, DE), Calibration, Integration, DAQ & Slow-Control (Y.Yang, BE), Offline & Computing

JUNO Civil Construction

A. Garfagnini (UniPD)

JUNO Schedule

A. Garfagnini (UniPD)

JUNO Competitors

Different approaches to measure the Mass Hierarchy

- ✓ medium baseline reactor $\overline{\nu}_e \rightarrow \overline{\nu}_e$ oscillation experiments: JUNO, RENO-50
- ✓ long-baseline accelerator $\nu_{\mu} \rightarrow \nu_{e}$, ($\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$) oscillation experiments: T2K, No ν A, DUNE, Hyper-K
- ✓ atmospheric $\nu_{\mu} \rightarrow \nu_{e}$, ($\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$) oscillation experiments: INO, PINGU, ORCA, DUNE, Hyper-K
- ✓ The first method (reactors at a medium baseline) relies on the oscillation interference between Δm^2_{31} and Δm^2_{32}
- → no dependences on : δ_{CP} , θ_{23} or 3 versus 4 oscillation pattern
- ✓ accelerator and atmospheric neutrino experiments depend on the matter effect in neutrino oscillations
- → sensitivity depends strongly on δ_{CP} degeneracy and 3 versus 4 oscillation pattern

Sensitivity to the NMH for various techniques

Sources: arXiv:1311.1822, arXiv:1401.2046v1, arXiv:1406.3689v1, Neutrino 2014, LBNE-doc-8087-v10

A. Garfagnini (UniPD)

Conclusions

- ✓ JUNO has been approved in February 2013 with a 300 M\$ budget
- → the physics reach is very broad : the first general-purpose neutrino detector (?)
- → several challenging issues have to be faced
 - ... but preparation proceeds at high speed
 - → well defined detector R&D program
 - → CDR and Yellow Book of Physics published in arXiv
 - → groundbreaking cerimony on January 10th, 2015. Civil construction will be completed in three years
- ✓ a strong international collaboration is rapidly growing
- ➔ a new era of high precision neutrino physics is about to begin

A. Garfagnini (UniPD)

Reserve Slides

A. Garfagnini (UniPD)

The JUNO Experiment

Antwerpen, Nov 19, 2015 43 / 44

JUNO backgrounds

Event Type	Raw rate	Reduction
Radioactivity (in FV <17.2m)	0.4 Hz (PMTs) 2.2 Hz (LS) 3.7 Hz (acrylic) 0.2 Hz (support) 1.3 Hz (Rn) ~ 0.03 (rock)	Use low radioactivity PMTs; LS raw material purification (w/o distillation after LS production)
Cosmogenic isotopes (delayed)	340/day	
Spallation neutron	1.8 Hz	
Accidentals	~410/day	→ 1.1/day w/ prompt-delayed distance $R_{p-d} < 1.5m$. Negligible.
Fast neutron	0.01/day	0.01/day (σ=100%)

80/day 1.8/day after muon veto (σ =20%)

3.8/day (acrylic) \rightarrow 0.05 /day (acrylic), FV cut (σ =50%) 0.2/day (balloon) \rightarrow negligible (balloon), FV cut

A. Garfagnini (UniPD)

⁹Li/⁸He

(a, n)

Antwerpen, Nov 19, 2015

Singles

IBD bkg