

TELESCOPE ARRAY: STATUS, RESULTS AND FUTURE PROSPECTS

P. Tinyakov¹

¹Université Libre de Bruxelles, Bruxelles, Belgium

Outline

Telescope Array detector

Spectrum

Composition

Anisotropies

Future TA

Summary

Latest UHECR experiments

TELESCOPE ARRAY COLLABORATION

T. ABU-ZAYYAD¹, R. AIDA², M. ALLEN¹, R. ANDERSON¹, R. AZUMA³, E. BARCIKOWSKI¹, J. W. BELZ¹, D. R. BERGMAN¹, S. A. BLAKE¹, R. CADY¹, B. G. CHEON⁴, J. CHIBA⁵, M. CHIKAWA⁶, E. J. CHO⁴, W. R. CHO⁷, H. FUJII⁸, T. FUJII⁹, T. FUKUDA³, M. FUKUSHIMA^{10,11}, W. HANLON¹, K. HAYASHI³, Y. HAYASHI⁹, N. HAYASHIDA¹⁰, K. HIBINO¹², K. HIYAMA¹⁰, K. HONDA², T. IGUCHI³, D. IKEDA¹⁰, K. IKUTA², N. INOUE¹³, T. ISHII², R. ISHIMORI³, D. IVANOV^{1,14}, S. IWAMOTO², C. C. H. JUI¹, K. KADOTA¹⁵, F. KAKIMOTO³, O. KALASHEV¹⁶, T. KANBE², K. KASAHARA¹⁷, H. KAWAI¹⁸, S. KAWAKAMI⁹, S. KAWANA¹³, E. KIDO¹⁰, H. B. KIM⁴, H. K. KIM⁷, J. H. KIM¹, J. H. KIM⁴, K. KITAMOTO⁶, S. KITAMURA³, Y. KITAMURA³, K. KOBAYASHI⁵, Y. KOBAYASHI³, Y. KONDO¹⁰, K, KURAMOTO⁹, V. KUZMIN¹⁶, Y. J. KWON⁷, J. LAN¹, S. I. LIM¹⁹, S. MACHIDA³, K. MARTENS¹¹, T. MATSUDA⁸, T. MATSUURA³, T. MATSUYAMA⁹, J. N. MATTHEWS¹, M. MINAMINO⁹, K. MIYATA⁵, Y. MURANO³, I. MYERS¹, K. NAGASAWA¹³, S. NAGATAKI²⁰, T. NAKAMURA²¹, S. W. NAM¹⁹, T. NONAKA¹⁰, S. OGIO⁹, M. OHNISHI¹⁰, H. OHOKA¹⁰, K. OKI¹⁰, D. OKU², T. OKUDA²², A. OSHIMA⁹, S. OZAWA¹⁷, I. H. PARK¹⁹, M. S. PSHIRKOV²³, D. C. RODRIGUEZ¹, S. Y. ROH²⁴, G. RUBTSOV¹⁶, D. RYU²⁴, H. SAGAWA¹⁰, N. SAKURAI⁹, A. L. SAMPSON¹, L. M. SCOTT¹⁴, P. D. SHAH¹, F. SHIBATA², T. SHIBATA¹⁰, H. SHIMODAIRA¹⁰, B. K. SHIN⁴, J. I. SHIN⁷, T. SHIRAHAMA¹³, J. D. SMITH¹, P. SOKOLSKY¹, B. T. STOKES¹, S. R. STRATTON^{1,14}, T. STROMAN¹, S. SUZUKI⁸, Y. TAKAHASHI¹⁰, M. TAKEDA¹⁰, A. TAKETA²⁵, M. TAKITA¹⁰, Y. TAMEDA¹⁰, H. TANAKA⁹, K. TANAKA²⁶, M. TANAKA⁹, S. B. THOMAS¹, G. B. THOMSON¹, P. TINYAKOV^{16,23}, I. TKACHEV¹⁶, H. TOKUNO³, T. TOMIDA²⁷, S. TROITSKY¹⁶, Y. TSUNESADA³, K, TSUTSUMI³, Y, TSUYUGUCHI², Y, UCHIHORI²⁸, S, UDO¹², H, UKAI², G, VASILOFF¹, Y, WADA¹³, T, WONG¹, M, WOOD¹, Y. YAMAKAWA¹⁰, R. YAMANE⁹, H. YAMAOKA⁸, K. YAMAZAKI⁹, J. YANG¹⁹, Y. YONEDA⁹, S. YOSHIDA¹⁸, H. YOSHII²⁹, X. ZHOU⁶, R. ZOLLINGER¹, AND Z. ZUNDEL¹

~ 140 collaborators from 29 Institutions in Belgium, Japan, Korea, Russia, USA

TELESCOPE ARRAY DETECTOR

TELESCOPE ARRAY HYBRID DETECTOR

- 113.13333° W 112.95000° W 112.76667° W WGSB4 112.450 Map created with TOPOI® ©2002 National Geographic (www.nationalgeographic.com/topo)
- 507 scintillator detectors covering 680 km²
- 3 fluorescence sites, 38 telescopes
- Surface detector fully operational from March 2008
- SD relative size: TA \sim 9 \times AGASA \sim PAO/4

TA surface detectors

- \blacktriangleright Deployed with the spacing \sim 1.2 km
- Powered by solar panels. Connected by radio.

TA Fluorescence Detectors

Hybrid event example

Triple FD Event (2008-10-26)

TALE low energy extension

TA Low Energy Extension (TALE)

10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies [859- PoS 637] Poster 1 CR Track: CRIN Board #: 148 Presented by Shoichi OGIO on 30 Jul 2015

at 15:30

TALE-SD array

Infill surface detector array of more densely packed surface detectors (lower energy threshold)

SPECTRUM

TA measures spectrum by several techniques:

- Fluorescence detector (FD-mono) at three stations independently + in stereo mode (FD-stereo)
- Surface detector (SD) largest statistics
- Hybrid (SD+FD) used for calibration
- TALE SD low energies
- TALE Cherenkov even lower energies

TA SD, $E > 10^{18.2} \text{ eV}$

Add TA FD Mono, $E > 10^{17.2} eV$

Contribution **320**, "Energy spectrum and Mass Composition Measured with the Telescope Array Fluorescence Detector Using a Monocular Analysis", T. Fujii

Contribution **445**, "Fluorescence Detection of Cosmic Ray Air Showers with the Telescope Array Low Energy Extension", Z. Zundel

Contribution **422**, "Cosmic Rays Energy Spectrum Observed by the TALE Detector Using Čerenkov Light", T. AbuZayyad

Combined TA Spectrum

Fit with power broken law

Comparison with other experiments

COMPOSITION

TA composition measurement

- Observable sensitive to composition: shower depth X_{max}
 FD data only
- Difficult measurement:
 - large fluctuations, limited statistics
 - model uncertainties
 - biases in event selection
- TA strategy:
 - full MC simulation of the data analysis chain (including event selection)
 - prediction for different compositions
 - comparison to data

Published Hybrid Composition (MD)

R. Abbasi et al. (TA Collaboration) Astropart Phys. (2014) 11 004

ANISOTROPIES

Most recent "anisotropy" data set (SD)

- covers the period 12.05.2008 11.05.2015 (full 7 years)
- zenith angle up to 55°, loose border cut
- geometrical acceptance; exposure ~ 8600 km² yr sr
- 2996 above 10 EeV
- 210 above 40 EeV
- 83 above 57 EeV
- angular resolution: better than 1.5°
- energy resolution: ~ 20%

Global distributions

2996 events with E > 10 EeV

equatorial

supergalactic

KS tests:

Frame	longitude	latitude
Equatorial:	0.19	0.58
Supergalactic:	0.54	0.17

Global distributions

210 events with E > 40 EeV

equatorial

supergalactic

KS tests:

Frame	longitude	latitude
Equatorial:	0.12	0.63
Supergalactic:	0.74	0.15

Global distributions

Supergalactic:

83 events with E > 57 EeV

0.03

0.01

HOT SPOT: 7 yr update

Same cuts as for 5yr; 109 events with E > 57 EeV in 7yr set

HOT SPOT: 7 yr update

HOT SPOT: 7 yr update

Significance calculation (same procedure as for 5

- oversampling at 15°, 20°, 25°, 30°, 35°, moving center
- ► Pre-trial: $P = 5.07\sigma$; $N_{on} = 24$; $N_{bg} = 6.88$; Post-trial $P = 3.7 \times 10^{-4} (3.4\sigma)$ \implies same as for 5 yr

 Blind search with 2yr data (6th and 7th yr): expected in the spot region 2.31, observed 4, P = 0.2

Period	Total (>57EeV)	Hotspot Signals	B.G.	Chance Prob.	Center position (RA., Dec.)
6-th year	15	3	0.94	7%	146.7°, 43.2°
7-th year	22	1	1.37	74%	146.7°, 43.2°
6 & 7-th year	37	4	2.31	20%	146.7°, 43.2°

HOT SPOT: year-by-year statistics

- Consider distribution of the number of events per year in the hot spot region.
- Build cumulative distribution
- Compare with signal and bg expectations
- \Rightarrow Compatible with signal;

Not compatible with bg at 2.5σ CL

Adding Auger events

Comparison with Large-Scale Structure

Sky map of expected flux at E > 57 EeV (Galactic coordinates). The smearing angle is 6-. The letters indicate the nearby structures as follows: C: Centaurus supercluster (60 Mpc); Co: Coma cluster (90 Mpc); E: Fridanus cluster (30 Mpc); H: Fornax cluster (20 Mpc); HY: Hydra supercluster (55 Mpc); PI: Pavo-Indus supercluster (70 Mpc); VN: Norma supercluster (70 Mpc); PP: Perseus-Pisces supercluster (70 Mpc); UM: Ursa Major (20 Mpc); and V: Virgo cluster (20 Mpc).

TA 7 years + PAO 10 years

FUTURE TA

TA×4 project

- Quadrule TA SD (~3000 km²)
 - 500 scintillator SDs 2.08 km spacing
- 2 FD stations
- Proposals
 - SD: approved in Japan in April 2015
 - FD: submit in US in October 2015
- Get 19 TA years of SD data by 2010
- Get 16.3 TA years of hybrid data
 - 2.7-year construction
 - TA in operation
 - 2.3-year observation

Efficiency for additional TA × 4 SD array Differential for energies

SUMMARY

► Spectrum:

- several features over 4.5 orders of magnitude in energy
- ankle and GZK suppression energy are consistent with protons
- Composition:
 - consistent with protons; inconsistent with iron
- Anisotropy:
 - a hot spot at E > 57 EeV;
 - needs confirmation with higher statistics
 - presently consistent with LSS model + protons
- Future plans:
 - ground array TAx4 approved and is being constructed
 - proposal for complementary fluorescent detector is submitted

