### ttH + other near term Higgs measurements

Peter Onyisi

Pitt-PACC 3 Dec 2015



#### Intro

- Fermion couplings
  - with special attention to ttH ...
- Differential σ
- Alternate presentations of data

Of course, there are many more measurements coming!

Details shown will be from ATLAS - expts typically have very similar solutions to problems



The 2 $\sigma$  anomalies in the combined ATLAS+CMS fit are in the fermion couplings...

(leaving gluon coupling free)

ATLAS+CMS combo: ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

#### SM Matrix

|    | ggF      | VBF      | VH       | ttH |
|----|----------|----------|----------|-----|
| γγ | <b>√</b> | <b>√</b> | <b>√</b> | ✓   |
| ZZ | ✓        | ✓        | <b>√</b> | ✓   |
| WW | ✓        | ✓        | ✓        | ✓   |
| ττ | ✓        | ✓        | ✓        | ✓   |
| bb |          | ✓        | ✓        | ✓   |

- Measurements/searches in all reasonable channels
- Production mode searches also probe decays
  - e.g. H  $\rightarrow$  bb constraint from ttH, H  $\rightarrow$  bb search

## A Note on Projections

- We tend to brute-force "early" measurements using dirtier signatures (high stats, but large systematics)
- Currently subleading channels may dominate sensitivity in the future – but "future" may be > 300 fb⁻¹
  - and, honestly, we learn how to do existing analyses better with time
- Comments about projected sensitivity only "official" if explicitly noted

It's tough to make predictions, especially about the future

# How to measure the Top-Higgs Coupling?

- Highest rate way: gg → H through top loop
- However, with just rate measurement, effects of top are not distinguishable from new physics in gg → H or qq → H
- Tree-level measurement:  $pp \rightarrow t\bar{t}H$ 
  - sensitive to NP in different ways





#### ttH + EFT

Explicit example of degeneracy between dim-6 operators affecting pp → H and pp → ttH

Higgs-gluon coupling:

$$\mathcal{O}_{HG} = \frac{c_{HG}}{2\Lambda^2} (H^{\dagger} H) G_a^{\mu\nu} G_{\mu\nu}^a$$

Top chromomagnetic dipole:

$$\mathcal{O}_{hgt} = \frac{c_{hgt}}{\Lambda^2} (\bar{Q}_L H) \sigma^{\mu\nu} T^a t_R G^a_{\mu\nu}$$

Blue band shows constraint from ggF

Also illustrates interplay with precision top measurements



Bramante, Delgado, Martin PRD 89, 093006 (2014)

#### tH

- SM has destructive interference between H emission from top and from W: if relative sign of top coupling flips, have large constructive interference
- Can resolve sign ambiguity between fermionic and bosonic Higgs couplings
  - interesting interplay with Br(H  $\rightarrow \gamma\gamma$ ), which also depends on HWW/Htt interference





# Finding ttH

- Signature is top pair decay + Higgs decay
- Top quarks decay  $\sim 100\%$  via t  $\rightarrow$  W b
  - W decays 68% of the time to quarks,  $\sim$  11% to each of e,  $\mu$ ,  $\tau$
- Top quark pair can be dileptonic, semileptonic ("lepton+jets"), or all hadronic
  - dileptonic with e and  $\mu \sim 4\%$  of  $t\bar{t}$  decays
  - all hadronic must be separated from pure QCD multijet events





## Diphotons

- Diphoton requirement makes channel so clean that main challenge is to reduce contamination from other Higgs production modes
  - A bump at 125 GeV is a Higgs: but is it ttH? Contamination of 15-30% of other production
- Indirectly sensitive to tH (leptonic selection can be very loose)
  - Can imagine an additional "tH" category to improve sensitivity

#### ATLAS ttH, $H \rightarrow \gamma \gamma$ purity

PLB 740 222 (2015)

| Category                 | $N_H$ | ggF  | <b>VBF</b> | WH   | ZH  | $t\bar{t}H$ | tHqb | WtH | $N_B$               |
|--------------------------|-------|------|------------|------|-----|-------------|------|-----|---------------------|
| 7 TeV leptonic selection | 0.10  | 0.6  | 0.1        | 14.9 | 4.0 | 72.6        | 5.3  | 2.5 | $0.5^{+0.5}_{-0.3}$ |
| 7 TeV hadronic selection | 0.07  | 10.5 | 1.3        | 1.3  | 1.4 | 80.9        | 2.6  | 1.9 | $0.5^{+0.5}_{-0.3}$ |
| 8 TeV leptonic selection | 0.58  | 1.0  | 0.2        | 8.1  | 2.3 | 80.3        | 5.6  | 2.6 | $0.9^{+0.6}_{-0.4}$ |
| 8 TeV hadronic selection | 0.49  | 7.3  | 1.0        | 0.7  | 1.3 | 84.2        | 3.4  | 2.1 | $2.7^{+0.9}_{-0.7}$ |

SM tH production

## Diphoton Results





PLB 740 222 (2015)

 $\mu$  < 6.7 (4.9 exp) @95%





JHEP 09(2014) 087

 $\mu$  < 7.4 (4.7 exp) @95%

Assume  $\mu_{\text{non-ttH}} = 1$ ( $\mu = scaling \ of \ observed \ rate in \ acceptance$ )

## tH, H $\rightarrow \gamma \gamma$

- Additional interpretation of ATLAS ttH[γγ] search
- Scan  $\kappa_t$ : rule out  $\kappa_t$  < -1.3 and  $\kappa_t$  > 8.0 at 95% CL

 $\kappa_{\chi}$  = scaling factor for X-H coupling

10

PLB 740 222 (2015)



3 Dec 2015 ttH + others 11

#### $H \rightarrow bb$

- H  $\rightarrow$  bb is 58% of the SM Higgs width @ 125 GeV
  - Mass resolution is much worse than for γγ
  - Background (tt + heavy flavor jets) tricky to model
- Strategy: sort events by number of jets and b-tags, then in each channel classify events
  - if you're feeling sophisticated, use a neural network or matrix element methods
  - use background-rich channels to constrain background and detector systematics
  - cut
- Only lepton+jets and dilepton channels shown by experiments so far

ATLAS: EPJC 75 349 (2015)

CMS: JHEP 09(2014) 087

CMS matrix element: *EPJC 75 251 (2015)* 

# Backgrounds

dominated by tt + heavy flavor jets in all signal-rich regions



## Variable Modeling

Four highest ranked variables shown

$$D1 = \frac{\mathcal{L}_{t\bar{t}H}}{\mathcal{L}_{t\bar{t}H} + 0.23 \cdot \mathcal{L}_{t\bar{t}+b\bar{b}}}$$



### Fit Results





### Results



CMS nominal







EPJC 75 349 (2015)



JHEP 05(2013) 145



## ttH, $H \rightarrow WW/\tau\tau$

- Complex topology: WWWWbb or ttWWbb
  - rich set of final states with high multiplicities
  - backgrounds mostly tt + EWK, not tt + QCD
- Take advantage of final states not reachable from tt production
  - ≥ 3 leptons, or 2 same sign leptons
- H → ττ worth exploiting
  - σ(ttZ) and σ(ttH) similar: no overwhelming Z bkg to H → ττ

| ATLAS           | Higgs boson decay mode |     |     |       |  |  |  |
|-----------------|------------------------|-----|-----|-------|--|--|--|
|                 | ww*                    | ττ  | ZZ* | other |  |  |  |
| 2ℓ same sign oτ | 80%                    | 15% | 3%  | 2%    |  |  |  |
| 36              | 74%                    | 15% | 7%  | 4%    |  |  |  |
| 2ℓ same sign 1τ | 35%                    | 62% | 2%  | 1%    |  |  |  |
| 40              | 69%                    | 14% | 14% | 4%    |  |  |  |
| 1ℓ 2τ           | 4%                     | 93% | 0%  | 3%    |  |  |  |

ATLAS: *PLB 749 519 (2015)* CMS: *JHEP 09(2014) 087* + *CMS-PAS-HIG-2013-020* 

## ttH, $H \rightarrow WW/\tau\tau$



CMS: CMS-PAS-HIG-2013-020

Nothing apparently wrong with CMS μμ

ATLAS does not see dimuon excess; combined results very compatible



ATLAS: PLB 749 519 (2015)



### ttH 2ℓ 1τ candidate



Run: 205016

Event: 24402934

2012-06-15 04:26:56 CEST



jet

tau-jet

#### Combination





Signal significance:  $\frac{3.4}{1.2}\sigma$  exp)

21g/10131g/1111carree: 2140 (2130 c)

Full ATLAS combo: *PLB 749 519 (2015)* 

CMS ttH combo: *JHEP 09(2014) 087* 

| Production process | Measured significance $(\sigma)$ | Expected significance $(\sigma)$ |
|--------------------|----------------------------------|----------------------------------|
| $V{ m BF}$         | 5.4                              | 4.7                              |
| WH                 | 2.4                              | 2.7                              |
| ZH                 | 2.3                              | 2.9                              |
| VH                 | 3.5                              | 4.2                              |
| ttH                | $\boxed{4.4}$                    | 2.0                              |
| Decay channel      |                                  |                                  |
| $H \to \tau \tau$  | 5.5                              | 5.0                              |
| $H \rightarrow bb$ | 2.6                              | 3.7                              |
|                    |                                  |                                  |

| Production process | ATLAS+CMS              | ATLAS                  | CMS                    |
|--------------------|------------------------|------------------------|------------------------|
| $\mu_{ m ggF}$     | $1.03^{+0.17}_{-0.15}$ | $1.25^{+0.24}_{-0.21}$ | $0.84^{+0.19}_{-0.16}$ |
| $\mu_{ m VBF}$     | $1.18^{+0.25}_{-0.23}$ | $1.21^{+0.33}_{-0.30}$ | $1.13^{+0.37}_{-0.34}$ |
| $\mu_{WH}$         | $0.88^{+0.40}_{-0.38}$ | $1.25^{+0.56}_{-0.52}$ | $0.46^{+0.57}_{-0.54}$ |
| $\mu_{ZH}$         | $0.80^{+0.39}_{-0.36}$ | $0.30^{+0.51}_{-0.46}$ | $1.35^{+0.58}_{-0.54}$ |
| $\mu_{ttH}$        | $2.3_{-0.6}^{+0.7}$    | $1.9^{+0.8}_{-0.7}$    | $2.9_{-0.9}^{+1.0}$    |

SM ttH sensitivity is on the way!

ATLAS+CMS combo: ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

#### Dedicated tH searches

- CMS has done dedicated tH searches (vetoing ttH) in γγ, bb, WW, ττ
  - dominated by diphoton
- Results quoted relative to reversed top Yukawa coupling (maximal constructive interference – x10 SM)
- Combined  $\mu$  < 2.8x non-SM (2.0 exp)

Combination: 1509.08159, sub to JHEP



3 Dec 2015 ttH + others 21

#### Run 2 for ttH

- Each fb<sup>-1</sup> worth more @ 13 TeV
  - $-\sigma$ (ttH) up a factor  $\sim 4$
  - however, expect more pileup, and tt+X production has more jet activity: reoptimization work needs to be done



## ttH Projections

- ttH has advantage of having many decay modes with quite different systematics
  - e.g. with more data H  $\rightarrow \gamma\gamma$ , (ttH)  $\rightarrow$  4 $\ell$ bb becomes very relevant
- Personal opinion: a good chance of 5σ sensitivity for SM signal per experiment with full Run 2 dataset
  - combination of channels necessary
  - ≈ ±10% on coupling
  - theory systematics become relevant
- tH analyses will also progress



# $VH, H \rightarrow bb$

- Use  $Z \rightarrow \ell\ell$ ,  $W \rightarrow \ell\nu$ ,  $Z \rightarrow \nu\nu$  decays (2/1/0 leptons)
  - enhance S/B by looking separately at high  $p_{\tau}(V)$  categories
  - combine b-tagging info with kinematics in MVA
- Sensitive to tt, W/Z + heavy flavor jet modeling
- Validate with (W/Z)Z,  $Z \rightarrow bb$  search





ATLAS: JHEP 01(2015) 069 CMS: PRD 89 012003 (2014) CMS Update: EPJC 75 212 (2015)

## VH, $H \rightarrow bb$ results



3 Dec 2015 ttH + others 25

#### $VBFH \rightarrow bb$

- Topology: light quark jets with large rapidity gap, little activity in between except for H → bb candidate
- all-hadronic final state: trigger is an issue
  - pick out VBF-like topologies in trigger
- BDT to choose most likely b-jets; additional variables to
  - separate q from g jets

CMS: PRD 92, 032008 (2015)

reject QCD multijet production





TABLE V. Observed and expected 95% CL limits, best fit values on the signal strength parameter  $\mu = \sigma/\sigma_{\rm SM}$  and signal significances for  $m_H = 125$  GeV, for each  $H \to b\bar{b}$  channel and their combination.

| $H 	o b ar{b}$   | Best fit<br>(68% CL) |          | limits<br>CL) | Signal significance |          |  |
|------------------|----------------------|----------|---------------|---------------------|----------|--|
| Channel          | Observed             | Observed | Expected      | Observed            | Expected |  |
| VH               | $0.89 \pm 0.43$      | 1.68     | 0.85          | 2.08                | 2.52     |  |
| $t\overline{t}H$ | $0.7 \pm 1.8$        | 4.1      | 3.5           | 0.37                | 0.58     |  |
| VBF              | $2.8^{+1.6}_{-1.4}$  | 5.5      | 2.5           | 2.20                | 0.83     |  |
| Combined         |                      | 1.77     | 0.78          | 2.56                | 2.70     |  |

#### $H \rightarrow \tau \tau$

#### JHEP 04(2015) 117



1511.08352 (sub to PRD)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Signal Strength ( $\mu$ ) at  $m_H$  = 125 GeV

#### JHEP 05(2014) 104



Significance ATLAS 4.5σ obs (3.4σ exp) CMS 3.8σ obs (3.9σ exp)



#### Differential cross sections

- High-resolution modes H → γγ, H → 4ℓ allow us to extract differential distributions in Higgs kinematic properties
  - e.g. look for deviations from SM at high p<sub>T</sub>, #jets, ...

 Will benefit enormously from more statistics



ATLAS γγ: JHEP 09(2014) 112 ATLAS 4ℓ: PLB 738 234 (2014) ATLAS combo: PRL 115 091801 (2015) CMS γγ: 1508.07819 (sub to EPJC) CMS 4ℓ: CMS-PAS-HIG-14-028

#### PRL 115 091801 (2015)



3 Dec 2015 ttH + others 28

## EFT probe

• Effective field theory analysis: fit  $H \to \gamma \gamma$  differential distribution allowing for dimension six operators

sensitive to Hgg interaction through ggF, to HVV via VBF+VH

production

$$\begin{split} &\text{H}\gamma\gamma \quad \text{Hgg} \quad \text{HWW/HZZ/HZ}\gamma \\ \mathcal{L}_{\text{eff}} &= \bar{c}_{\gamma}O_{\gamma} + \bar{c}_{g}O_{g} + \bar{c}_{HW}O_{HW} + \bar{c}_{HB}O_{HB} \quad \text{CP-even} \\ &+ \tilde{c}_{\gamma}\tilde{O}_{\gamma} + \tilde{c}_{g}\tilde{O}_{g} + \tilde{c}_{HW}\tilde{O}_{HW} + \tilde{c}_{HB}\tilde{O}_{HB}, \quad \text{CP-odd} \end{split}$$

| Coefficient          | 95% 1 - CL  limit                                             |
|----------------------|---------------------------------------------------------------|
| $\bar{c}_{\gamma}$   | $[-7.4, 5.7] \times 10^{-4} \cup [3.8, 5.1] \times 10^{-3}$   |
| $\tilde{c}_{\gamma}$ | $[-1.8, 1.8] \times 10^{-3}$                                  |
| $ar{c}_g$            | $[-0.7, 1.3] \times 10^{-4} \cup [-5.8, -3.8] \times 10^{-4}$ |
| $\tilde{c}_g$        | $[-2.4, 2.4] \times 10^{-4}$                                  |
| $\bar{c}_{HW}$       | $[-8.6, 9.2] \times 10^{-2}$                                  |
| $	ilde{c}_{HW}$      | [-0.23, 0.23]                                                 |

1508.02507, sub to PLB





## "Simplified" Cross Sections

- Measurements typically reported as a ratio  $\mu$  to SM (including theory errors)
  - Hard to recompute if theory changes
  - Potentially tie together very different phase space regions
  - Hard to understand how effects of NP may affect  $\mu$  in any given measurement
- Simplified cross section concept:
  - Split each production mode into kinematic bins (aligned to experimental sensitivity), e.g. ggF oj, 1j, 2j VBF-like, ...
  - Determine coefficients of contributions of each kinematic bin to an observation channel
  - SM acts as kinematic template, but only within each region: more transparent what the observation sees
- Done within context of LHC Higgs XS Working Group

# Simplified xsec

#### Definition of Simplified Cross Sections.

#### Current $\mu$ fits:

$$\begin{split} \sigma_{1}^{\text{meas}} &= A_{1}^{ggH} \times \underbrace{\mu_{ggH} \times \sigma_{ggH}^{\text{SM}}}_{\text{}} &+ A_{1}^{\text{VBF}} \times \underbrace{\mu_{\text{VBF}} \times \sigma_{\text{VBF}}^{\text{SM}}}_{\text{VBF}} \\ &= A_{1}^{ggH} \times \underbrace{\sigma_{ggH}}_{\text{}} &+ A_{1}^{\text{VBF}} \times \underbrace{\mu_{\text{VBF}} \times \sigma_{\text{VBF}}^{\text{SM}}}_{\text{}} \\ \sigma_{2}^{\text{meas}} &= A_{2}^{ggH} \times \underbrace{\mu_{ggH} \times \sigma_{ggH}^{\text{SM}}}_{\text{}} &+ A_{2}^{\text{VBF}} \times \underbrace{\mu_{\text{VBF}} \times \sigma_{\text{VBF}}^{\text{SM}}}_{\text{}} \\ &= A_{2}^{ggH} \times \underbrace{\sigma_{ggH}}_{\text{}} &+ A_{2}^{\text{VBF}} \times \underbrace{\mu_{\text{VBF}} \times \sigma_{\text{VBF}}^{\text{SM}}}_{\text{}} \\ &+ A_{2}^{\text{VBF}} \times \underbrace{\mu_{\text{VBF}} \times \sigma_{\text{VBF}}^{\text{SM}}}_{\text{}} \end{split}$$

- Fit for  $\sigma_{ggH}$ ,  $\sigma_{VBF}$ 
  - In the SM: Correspond to total ggH and VBF production cross sections
- ullet  $A_i^{ggH}$ ,  $A_i^{VBF}$  are acceptances for SM processes ightarrow theory-dependent
  - Split each production cross section into several kinematic bins/slices a, b, ...

$$\begin{split} \sigma_1^{\rm meas} &= A_1^{ggH\,a} \times \sigma_{ggH\,a} + A_1^{ggH\,b} \times \sigma_{ggH\,b} + A_2^{\rm VBF\,c} \sigma_{\rm VBF\,c} + \cdots \\ \sigma_2^{\rm meas} &= \ldots \end{split}$$

- A<sup>j</sup> only depend on SM kinematics inside a given bin
- If this becomes a problem, split the bin
- ⇒ SM processes act as kinematic templates

(B)

Frank Tackmann (DESY)

Simplified Cross Section Framework

015.06.24

5 / 18

# On the way there ...

- ATLAS H  $\rightarrow \gamma \gamma$ : multiple categories, varying sensitivity to different production modes
- In future, imagine publishing acceptance matrix and measured cross sections in each category



PRD 90, 112015 (2014)



#### Conclusion

- Near-term future is bright for fermion couplings
  - generally have high S/B rare modes that will gain importance with more data
- ttH has large cross section gain
  - also, technically "evidence" already after Run 1
- Additional data will allow finer binning of other processes and enable more sophisticated probes of new physics

Run 2: exciting for Higgs physics

#### Extra

#### How to look for ttH?

- Generic signature is top pair + a Higgs decay
  - $H \rightarrow \gamma \gamma$  has a narrow bump
  - $H \rightarrow bb$  has a large rate
  - H → WW, H → ττ produce multilepton events
  - $H \rightarrow ZZ \rightarrow 4\ell$  has too low a rate
- Top pairs have a characteristic signatures of leptons, jets, and b-tagged jets



# [8 TeV] Diphoton Selection

- trigger: diphoton,  $p_{\tau} > (35, 25)$  GeV
- photons: leading (subleading)  $p_T > 0.35$  (0.25) x  $m_{\gamma\gamma}$ ; require == 2 photons
- leptons:  $e p_{\tau} > 15 \text{ GeV}$ ;  $\mu p_{\tau} > 10 \text{ GeV}$
- leptonic channel: ≥1 lepton, M(eγ) not in [84, 94] GeV, ≥ 1j @ 25 GeV, ≥ 1b @ 80% WP, ETmiss > 20 GeV if only one b-jet
- hadronic channel: no leptons
  - ≥ 6j @ 25 GeV, ≥ 2b @ 80% OR
  - ≥ 5j @30 GeV, ≥ 2b @ 70% OR
  - ≥ 6j @30 GeV, ≥ 1b @ 60%

| Category                 | $N_H$ | ggF  | <b>VBF</b> | WH   | ZH  | $t\bar{t}H$ | tHqb | WtH | $N_B$               |
|--------------------------|-------|------|------------|------|-----|-------------|------|-----|---------------------|
| 7 TeV leptonic selection | 0.10  | 0.6  | 0.1        | 14.9 | 4.0 | 72.6        | 5.3  | 2.5 | $0.5^{+0.5}_{-0.3}$ |
| 7 TeV hadronic selection | 0.07  | 10.5 | 1.3        | 1.3  | 1.4 | 80.9        | 2.6  | 1.9 | $0.5^{+0.5}_{-0.3}$ |
| 8 TeV leptonic selection | 0.58  | 1.0  | 0.2        | 8.1  | 2.3 | 80.3        | 5.6  | 2.6 | $0.9^{+0.6}_{-0.4}$ |
| 8 TeV hadronic selection | 0.49  | 7.3  | 1.0        | 0.7  | 1.3 | 84.2        | 3.4  | 2.1 | $2.7^{+0.9}_{-0.7}$ |

# Diphoton Coupling Interpretation



 $\kappa_{t}$  scales the SM Yukawa coupling (1=SM)

#### Categories



#### **Event Selection**

- trigger: single lepton triggers (e or μ); full efficiency @
   25 GeV
- leptons: leading p<sub>T</sub> > 25 GeV, subleading p<sub>T</sub> > 15 GeV (dilepton channel)
  - 1, 2-lep channels have no overlap
  - dilepton: Mll > 15 GeV, veto events with Mll =  $M_z \pm 8$  GeV for same flavor;  $H_{\tau} > 130$  GeV for e $\mu$
- jets: anti- $k_T$  0.4,  $p_T$  > 25 GeV,  $|\eta|$  < 2.5
- b tagging: 70% efficiency working point

# Top Reweighting

 To improve agreement of MC and data, reweight the tt pair p<sub>T</sub> and the top quark p<sub>T</sub> with scalings derived from 7 TeV data

Powheg+Pythia spectra generally too hard

 tt p<sub>T</sub> improves # jets recoiling against top pair system; top p<sub>T</sub> fixes energy of top decay products

tt+light, tt+cc events only; tt+bb handled

differently

ATLAS top kinematics: arxiv:1502.05923, accepted by JHEP





3 Dec 2015 ttH + others 40

## Top Pair Modeling

- Simulations of top quarks + extra jets are still not supersophisticated
  - Leading order matched simulations (MadGraph/Sherpa) can certainly do a consistent job
  - NLO generation for extra heavy flavor just becoming available, not yet possible to do full (light+heavy quark) matched NLO with mass effects
- The vast majority of tt+bb in the relevant kinematic regions comes from parton shower, even in LO matched simulations
  - guessing the kinematic regions where ME and PS are important (which you need to do for Alpgen matching) is a bad idea
- We find best agreement in control regions with Powheg+Pythia (NLO) – this is our baseline

# Fit effect on Signal-Rich Regions

Profile fit collapses systematics – large correlations



#### Pre-Fit Yields

- Most tt+light in l+jets 3b comes from W → cs tags
  - no analog in 2l





### NN Variable Separation

Four highest ranked variables shown

$$D1 = \frac{\mathcal{L}_{t\bar{t}H}}{\mathcal{L}_{t\bar{t}H} + 0.23 \cdot \mathcal{L}_{t\bar{t}+b\bar{b}}}$$



#### dilepton ≥4j ≥4b



#### The Fit

- Systematic uncertainties are "profiled" in the fit: we provide an initial constraint and allow data to update the values & errors
  - in particular this constrains background systematics using bkg-rich regions, and allows in situ charm tagging measurement
- All control and signal regions for lepton + jets and dileptons fit simultaneously
  - of course we can cross check between the channels; excellent agreement seen on central value of systematic nuisance parameters

## bb Systematics

| Systematic uncertainty                             | Type | Comp. |
|----------------------------------------------------|------|-------|
| Luminosity                                         | N    | 1     |
| Physics Objects                                    |      |       |
| Electron                                           | SN   | 5     |
| Muon                                               | SN   | 6     |
| Jet energy scale                                   | SN   | 22    |
| Jet vertex fraction                                | SN   | 1     |
| Jet energy resolution                              | SN   | 1     |
| Jet reconstruction                                 | SN   | 1     |
| b-tagging efficiency                               | SN   | 6     |
| c-tagging efficiency                               | SN   | 4     |
| Light-jet tagging efficiency                       | SN   | 12    |
| $High-p_T$ tagging efficiency                      | SN   | 1     |
| Background Model                                   |      |       |
| $t\bar{t}$ cross section                           | N    | 1     |
| $t\bar{t}$ modelling: $p_{\mathrm{T}}$ reweighting | SN   | 9     |
| $t\bar{t}$ modelling: parton shower                | SN   | 3     |
| $t\bar{t}$ +heavy-flavour: normalisation           | N    | 2     |
| $t\bar{t}+c\bar{c}$ : $p_{\mathrm{T}}$ reweighting | SN   | 2     |
| $t\bar{t}+c\bar{c}$ : generator                    | SN   | 4     |
| $t\bar{t}+b\bar{b}$ : NLO Shape                    | SN   | 8     |
| W+jets normalisation                               | N    | 3     |
| $W p_{\rm T}$ reweighting                          | SN   | 1     |
| Z+jets normalisation                               | N    | 3     |
| $Z p_{\mathrm{T}}$ reweighting                     | SN   | 1     |
| Lepton misID normalisation                         | N    | 3     |
| Lepton misID shape                                 | S    | 3     |
| Single top cross section                           | N    | 1     |
| Single top model                                   | SN   | 1     |
| Diboson+jets normalisation                         | N    | 3     |
| $t\bar{t} + V$ cross section                       | N    | 1     |
| $t\bar{t} + V \text{ model}$                       | SN   | 1     |
| Signal Model                                       |      |       |
| $t\bar{t}H$ scale                                  | SN   | 2     |
| $t\bar{t}H$ generator                              | SN   | 1     |
| $t\bar{t}H$ hadronisation                          | SN   | 1     |
| $t\bar{t}H$ PDF                                    | SN   | 1     |

Largest effects come from tt+HF normalization, the tt reweighting, and b-tagging

3 Dec 2015 ttH + others 46

# Fit effect in Background-Rich Regions



### S/B Visualization



# Fake Lepton Backgrounds

- Slightly different techniques in each channel.
  - 2ℓοτ, 3ℓ, 2ℓ1τ: variants on "fake factor" methods
  - 4l: limit from MC
  - 1ℓ2τ: predict fake τ bkg from MC (well modeled with looser event cuts)



e.g. 2ℓοτ: control region cuts: lower # jets than SR sideband leptons: non-isolated electrons, low-p<sub>T</sub> muons

### ttH multilepton decays

| Signal |                                                  | tt decay |            |                               |  |
|--------|--------------------------------------------------|----------|------------|-------------------------------|--|
|        |                                                  | lvlv bb  | ℓvjj bb    | all-hadronic top not targeted |  |
|        | $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ | 4ℓ       | 3 <b>l</b> |                               |  |
| decay  | $H \rightarrow WW \rightarrow \ell \nu jj$       | 3ℓ       | 2ίοτ 👡     |                               |  |
| s de   | $H \rightarrow \tau_{l} \tau_{l}$                | (4ℓ)     | 36         | only accept same sign $\ell$  |  |
| Higgs  | $H \rightarrow \tau_{_{I}} \ \tau_{_{h}}$        | 36       | 2ℓ1τ       | + require ≥1 b-jet,           |  |
|        | $H \rightarrow \tau_h^{} \tau_h^{}$              |          | 1 2τ       | high (≥2-5) jet multiplicity  |  |

 $H \rightarrow ZZ$  not very important due to low BF and Z vetoes

#### **Backgrounds**

Main bkg: non-prompt leptons, ttZ, ttW, diboson + jets, fake  $\tau$ 

- non-prompt lepton bkg estimated from extrapolation in isolation, ID variables,  $p_{\scriptscriptstyle T}$
- other backgrounds estimated from Monte Carlo, checked in various validation regions



#### $\overline{\text{ttH}}, H \rightarrow WW/\tau\tau$





|           | 2ℓ 1τ       | 46          | 1ℓ 2τ       |
|-----------|-------------|-------------|-------------|
| Total bkg | 1.4 ± 0.6   | 0.55 ± 0.17 | 16 ± 6      |
| SM H(125) | 0.47 ± 0.02 | 0.20 ± 0.01 | o.68 ± o.07 |
| Observed  | 1           | 1           | 10          |

# VH, H → bb systematics



#### VH, H → bb breakdowns



