Exotic Decays of the 125 GeV h (Theory)

Matt Strassler PITT PACC h and Beyond 12/3/15 • Much of today's talk is based on hep-ph/1312.4992

Exotic Decays of the 125 GeV Higgs Boson

David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz,⁵ Tao Liu,⁶ Zhen Liu,⁷ David McKeen,^{8,9} Jessie Shelton,⁵ Matthew Strassler,¹ Ze'ev Surujon,¹ Brock Tweedie,¹⁰ and Yi-Ming Zhong^{1,*}

Contains extensive list of references

Will also discuss long-lived particles briefly

Covered in Our Study

h decays

- to at most four visible SM partons
- and involving at least one non-SM particle in intermediate step

Exotic Decays of the $125~{ m GeV}$ Higgs Boson

David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz,⁵ Tao Liu,⁶ Zhen Liu,⁷ David McKeen,^{8,9} Jessie Shelton,⁵ Matthew Strassler,¹ Ze'ev Surujon,¹ Brock Tweedie,¹⁰ and Yi-Ming Zhong^{1,*}

Cases With No MET

Cases With MET

Not Covered in our Study

- Certain subtleties when particles are collimated
 - We only covered "simple lepton jets" (each jet has 2 leptons, nothing else)
- Higher parton-multiplicity final states
- New long-lived particles: require different treatment

Also:

- Simple and well-studied final states like h → τ μ
- Decays involving new off-shell particles

Motivation

- h decays may serve as window to weakly-interacting unknown particles.
 - e.g. discovery of neutrino in beta decay, other neutrinos in muon, tau decay
 - e.g. non-discovery of 4th neutrino, majorons, others in Z decay
- Dark Matter exists:
 - if it is particles, these particles may not carry SU(2) quantum numbers
 - Therefore these particles may have evaded LEP & have mass < 100 GeV
 - So possible that h → DM → invisible decay
 - Difficult to observe for Br < 10%
 - If DM part of low mass dark sector ("hidden valley"), then maybe
 - h → dark sector particles → visible particles, with or without MET
 - Much easier to observe! Can sometimes reach Br <<< 10%
- H "Portal" easy access to dark/hidden sectors/valleys
 - H operator has dimension 1, |H|² is gauge invariant, dimension 2
 - Coupling to "dark" sector involves low dimension operator

Motivation (2)

- 125 GeV h has very narrow width
 - small interactions with new sector can generate new decays
 - These decays could have had Br ~ 100%; could still have Br ~ 10%.
- Number of h produced is large, so potential to reach Br ~ 10⁻⁴ or better
 - 10⁶ already produced
 - Approaching 10⁸ in foreseeable future
 - But --- trigger and analysis challenges!
- In some theories,
 - h decays are first BSM physics discoverable at LHC
 - Or even the only BSM physics discoverable at LHC14!
- Same searches might turn up new members of scalar sector (e.g. H) if decays dominated by non-SM final states

Motivation (3)

- SUSY
 - NMSSM: Dermasek Gunion 04; Chang Fox Weiner 05 ...
 - RPV: Carpenter Kaplan Rhee 06 ...
- Hidden Valleys (SM+hidden sector with mass gap/ledge)
 - Make use of "Higgs portal" MJS Zurek 06 ...
- Neutrino Masses at weak scale Graesser 07 de Gouvea 07 ...
- Dark Matter Hooper Zurek, Pospelov Ritz, Finkbeiner et al. 09 ...
- Baryogenesis Cui Shuve 15 ...
- Hidden Naturalness
 - Models: [Burdman] Chacko Goh Harnik 05,06 ...
 - HV Pheno: Craig, Katz, MJS, Sundrum 15; Curtin & Verhaaren 15 ...
- Cosmological Relaxation [with higher cutoff] Graham, Kaplan, Rajendran 15

Urgency? Trigger!

- h → 4 or more partons → typical p_T ~ 30 GeV or less
 - Very low except for muons!
- ATLAS/CMS: Trigger challenge met for SM 4-body decays
- But not necessarily for non-SM decays with few e's, μ's
- Significant progress since 2013 but maybe more to be made?

Since 2013

- Lots of models (or regions of param space) predicting non-SM h decays.
- A substantial number of new experimental results!!
 - ATLAS, CMS, LHCb
 - Next talk!
- Very few theory studies?!?!
 - Guidance needed on triggering and analysis strategies!
 - See the summary chapter of our review for open questions needing study.

Decays Without MET

New particles with $m < m_h$ must be **neutral** to avoid LEP discovery

With a small loophole

We consider

- Spin 0 "a" [scalar or pseudo-scalar]
- Spin 1 "Z_D" [vector or pseudo-vector]

4 e/μ

- 2. $h \rightarrow Z_D Z_D \rightarrow 4 SM fermions$
- 3. $h \rightarrow a a \rightarrow 4 SM bosons$

4 photons

4. $h \rightarrow a a \rightarrow 4 SM fermions$

bbbb, bbμμ, bbττ, ττμμ, μμμμ See also Davoudiasl et al, Curtin et al, Falkowski Vega-Morales, ... '14

Mixed final states possible, e.g. bbγγ, but not currently sensitive

Four e/µ Final State

$h \rightarrow Z Z_D$

- Z_D produced & decays via kinetic mixing with γ/Z
- 2 parameters: Z_D mass, ε << 1

Z_D on-shell, extremely narrow width

Published ATLAS/CMS ZZ* data allowed us to extract limits

Direct limit

• Br(h \rightarrow Z X \rightarrow 4 ℓ) ~ 3 x 10⁻⁵

Including Z decay width to leptons

■ Br(h \rightarrow Z X) Br(X \rightarrow $\ell\ell$) ~ 5 x 10⁻⁴

Assuming a Z_D with kinetic mixing

- Br($Z_D \rightarrow \ell\ell$) ~ 0.3
- Br(h \rightarrow Z Z_D) ~ 2 x 10⁻³

X could also be a with $Br(a \rightarrow \mu\mu) \sim (m_{\mu}/m_{\tau})^2 \sim .0035$

But often need m_a < 10 GeV

Our recast of CMS; Similar for ATLAS

Limit ε for each Z_D mass

Four e/µ Final State

$h \rightarrow Z_D Z_D$

- Z_D produced via mixing of h with h_D
- Z_D decays via mixing with γ/Z

Why doesn't $h \rightarrow Z Z^*$ take care of this?

- Incorrectly pair leptons in almost all eeee, μμμμ events
- Eliminate most eeμμ events for m_e < 40 GeV
- Still we can extract limits (CMS h→ZZ*, ATLAS Z*Z*)

Direct limit

- Br(h \rightarrow X X \rightarrow 4 ℓ) ~ 5 x 10⁻⁵ Assuming a Z_D with kinetic mixing
- Br(h \rightarrow Z_D Z_D) ~ 5 x 10⁻⁴

We argued ATLAS/CMS could do factor of 2 - 8 better <u>now</u>, especially at low mass

Four Photons

$h \rightarrow a a$

a produced via coupling in scalar effective potential

a decays to gluons and/or photons via loop

No coupling to fermions

- m_a
- Br(h \rightarrow a a)
- Br($a \rightarrow \gamma \gamma$) depends on charge/mass of loop particles

■ Colorless particles in loop: $Br(a \rightarrow \gamma \gamma) = 1$

■ Colored particles in loop: $Br(a \rightarrow \gamma \gamma) < 0.005$ usually

General spectrum Anything between

Recommend:

- Put limits on Br(h \rightarrow a a) [Br(a $\rightarrow \gamma \gamma$)]² (expect in 10⁻⁽⁴⁻⁵⁾ range now)
 - 4j, 2j2γ searches maybe relevant only at ~300(?) fb⁻¹

An a that couples to fermions

$h \rightarrow a a$

- a produced via coupling in scalar effective potential
- a decays mainly to fermions via Yukawa-like couplings

Example: NMSSM -- gets lot of attention, but where is \$?

- a branching fractions similar to comparable-mass h
- $a \rightarrow \tau\tau$ small, $\mu\mu$ negligible if $m_a > 2 m_b$

Example: More general 2HDM + singlet scalar

- Leptonic, up-type, down-type Br's may grow/shrink relative to NMSSM
- Can have $a \rightarrow \tau\tau$ large, $\mu\mu$ measurable even if $m_a > 2 m_b$

Different Branching Fractions for a

Should not restrict searches to NMSSM-motivated scenario!

Recommend use of at least two benchmark models:

- NMSSM-like model
- 2. Leptonic-dominated quark-suppressed 2DHM+S model

Matt Strassler

Current Estimates of Sensitivity

Leptonic 2HDM+S; NMSSM at low m_a

	Projected/Current		quarks allowed		quarks suppressed		
Decay	2σ Limit	Produc-		Limit on		Limit on	
Mode	on $\mathrm{Br}(\mathcal{F}_i)$	tion	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\frac{1}{\sigma_{\mathrm{SM}}} \cdot \mathrm{Br(non\text{-}SM)}$	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\frac{\delta}{\sigma_{\rm SM}} \cdot \operatorname{Br(non-SM)}$	
\mathcal{F}_i	7+8 [14] TeV	Mode		7+8 [14] TeV		7+8 [14] TeV	400 (1.4)
$bar{b}bar{b}$	0.7	Wh	0.8	0.9	0	_	100 fb ⁻¹
	[0.2]			[0.2]		[-]	14 TeV boosted Wh
$bar{b} au au$	> 1	VBF	0.1	> 1	0	_	
	[0.15]			CII		[-]	14 TeV VBF
$bar{b}\mu\mu$	$(2-7)\cdot 10^{-4}$	99	3×10^{-4}	0.5 – 1 See	Curtin et	al '14 –	
	$[(0.6-2) \cdot 10^{-4}]$			(0.2 - 0.8)		[-]	14 TeV gg → h
ττττ	0.2 - 0.4		0.005	40 - 80	1	0.2 - 0.4	8 TeV gg → h
	[?]	99	0.005	[?]	1	[?]	(from multilepton recast)
$\tau \tau \mu \mu$	$(3-7)\cdot 10^{-4}$	99 3	9 10-5	10 - 20	0.007	0.04 - 0.1	8 TeV gg → h
	[?]		3×10^{-5}	[?]		[?]	(our analysis proposal)
μμμμ	$1 \cdot 10^{-4}$	gg	$1\cdot 10^{-7}$	1000	$1\cdot 10^{-5}$	$m_a > {10 \atop 2} m_\tau$	8 TeV gg → h
	[?]			[?]			Important for $m_a < 2 m_{\tau}$

Summary: Decays Without MET

- 1. $h \rightarrow Z Z_D \rightarrow 4$ SM fermions
 - Mixing ε vs. Z_D mass
- 2. $h \rightarrow Z_D Z_D \rightarrow 4$ SM fermions
 - Br(h \rightarrow Z_D Z_D) vs. Z_D mass

 $4 e/\mu$

4 photons

 $h \rightarrow 2 \rightarrow 4$

- 3. $h \rightarrow a a \rightarrow 4$ SM bosons
 - Br(h \rightarrow a a) vs. a mass

Mixed final states possible, e.g. bbyy

- 4. $h \rightarrow a a \rightarrow 4$ SM fermions
 - NMSSM-like model
 - Models with leptons enhanced, quarks suppressed

bbbb, bbμμ, bbττ, ττμμ, μμμμ

Lepton/photon collimation, jet merging at low a, Z_D mass

Spin ½ → h decay to 6 visible fermions

e.g. $h \rightarrow$ neutralinos \rightarrow 6 fermions via RPV

Asymmetric Decays (e.g. $h \rightarrow a a'$)

Higher multiplicity: e.g. 8b, complex lepton jets, etc.

Invisible Decays

Invisible Decays

- There may be light singlets
- They may not have visible decays
- Higgs may decay to them

But they might have visible decays!

Partly Visible Decays

With MET, # of processes, parameters grows rapidly

- Any final state can arise from many decay chains
 - Need multiple simplified models
- Theory/Experimental studies needed!
 - Experimental issues are subtle
- Most promising final states

Recently: Gabrielli et al. '14

- 1 or more photons + MET
- 1 or more lepton pairs + MET

No evidence yet that other final states are feasible at high MET

Maybe resonant bb + MET at 300 fb⁻¹?

Recently: Huang et al. '14

Challenges (1)

Often multiple possible decay chains with different kinematics

- Hard (p_T ~ 40) vs. Soft (p_T ~ 15)
- Resonant vs.non-resonant
- Edge vs. endpoint
- Collimated vs. uncorrelated

- Need several simplified models to cover kinematics
- Typically have 3 or more parameters (multiple masses, Br's)

2 photons + MET

Weak limit from CMS GMSB search

Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times \text{Br}(h \to \chi_2\chi_2 \to 2\gamma + E_T)$

Challenges (2)

- High MET: MET is useful in bkgd reduction, but γ/ℓ soft, inefficient
 - MET-based search, plus soft visible objects to reduce backgrounds
 - Possible kinematic features in the visible objects
- Low MET: harder γ/ℓ , but MET useless; just changes kinematics
 - Visible parton-based search, but with relaxed kinematic constraints

Example: 4 leptons + MET

- High MET: use VBF + MET search
 - + require 3 soft ℓ or + 2 SS ℓ ?
- Low MET: use/recast 4-lepton search
 - Require all 4 ℓ detectable
 - Do **not** demand $m_{4\ell} = 125 \text{ GeV}$
 - Look for resonances or edges in $\ell^+\ell^-$ pairs (alternate: use trilepton search, look for Z_D resonance?)

Prioritizing: Decays to Unusual Objects

- Unusual Objects means
 - New particles with displaced decays
 - Clusters of new particles with prompt or displaced decays
 - Soft final states
- Many of these searches cannot reconstruct h resonance
 - In this case, might use generic search for unusual objects -- not h-specific
 - Or require the jets from VBF or the lepton(s) from Wh, Zh
- Only thoroughly studied case is "lepton-jets"
 - Hidden particles with m < few GeV decaying to lepton pairs, hadron pairs
 - Possibly produced in clusters

Collimated Objects

• Uncollimated vs. Collimated vs. Cross-over?

- Simple lepton jets (2 particles) vs Complex lepton jets (>2 particles)
 - Preliminary searches for h decays to dielectron, dimuon exist
 - Very preliminary searches for multi-electron, multi-muon
 - Challenge of multiple mass scales

- Multi-jets (Very challenging searches)
 - Boosted h → 4 jets has been studied
 - What if h → neutralino → RPV decays to jets

Long Lifetimes

Any of previous decays can occur to objects with long lifetimes

- Commonly a symmetry restored at infinite lifetime
 - So technically natural
 - And in many models it is common due to natural suppression
 - e.g. non-abelian dark vector → kinetic mixing higher-dim op
 - e.g. composite dark vector → mixing suppressed by compositeness

So we can use the same theories, but very different experimental situation

- No SM background unless kinematics & lifetime near B,D mesons
- Detector backgrounds
 - cannot be simulated by theorists
 - but are often very small
- Trigger and reconstruction challenges are unique

ATLAS, CMS, LHCb: exciting progress on results, new triggers

Making Twin Hadrons

Visible Decay

$$G_0^+$$

twin Showering top

Hadronization

Twin glueballs

For folded SUSY, F-stops

$$\Gamma(h \to \hat{g}\hat{g}) \simeq \left(\frac{\hat{\alpha}_3}{\alpha_3} \frac{v^2}{f^2}\right)^2 \Gamma(h \to gg)$$

For folded SUSY, x 1/4

- Br (h \rightarrow twin gluons) ~ 0.1% for f = 3 v
- Enhanced by $60 (y'_b/y_b)^2$ if h \rightarrow twin bb

M.J. Strassler 11/10/2015

Fraternal Twin Higgs

Craig et al '15

Long Lifetimes: Experimental Methods

Look for various non-SM "objects"

- Bottom-like jet with vertex unusually displaced/massive/high-multiplicity
- Reconstructed tracks with vertex in pixel detector
- Apparently track-less jet, with vertex visible with special track reco.
- Vertex in HCAL: narrow "tau-like" jet with no ECAL energy
- Tracks in ATLAS muon system with no jet or ordinary tracks behind it

Triggering:

- On the displaced non-SM object
- On VBF jets or a lepton (from W,Z,t) or jet+MET
- On a combination of the two

Allowing trigger strategy and analysis strategy to decouple

Long Lifetimes: Analysis

ATLAS, CMS, LHCb searches

Sometimes can focus on a single object

- Displaced lepton pair + X in the tracker
- High-p_T displaced jet pair + X in the tracker

Often need two to beat backgrounds

- Two displaced jet pairs in the muon system ATLAS
- Two displaced vertices in the HCAL ATLAS

To get to good sensitivity to Higgs decays (and/or long lifetimes)

- Need searches for a single object
- Trigger and/or background reduction using VBF jets, lepton(s), jet+MET
- Push down in mass, push down in lifetime, eventually both

Two Decays Observed

Single Displaced Dilepton Pair

Summary

Need a comprehensive approach to non-SM h decays

- Could be the only new physics at the LHC
- We do not have a strong theoretical bias as to what it will look like
- Comprehensive low-multiplicity no-MET case exists now
- Comprehensive low-multiplicity MET case is harder, partially exists
- Need to exploit the analyses more thoroughly
- Need to cover uncollimated, collimated and transition region
- Long lifetimes more powerful searches needed role of new triggers
- Higher multiplicity poses challenges

NEED MORE THEORY/EXPT. STUDIES for high-priority channels

Still a little time left to influence trigger choices in Run 2

Additional Slides

Benchmark Models: Beyond LO

- Easy for theorists like those on our team to generate BSM benchmark models at LO for experimenters to use.
 - Some of our team are working on this.
- N(N)LO BSM corrections to production are usually unimportant
 - SM corrections are usually sufficient
 - Exception: multi-doublet models where production is not SM even at LO
- But NLO corrections to the decays are beyond us!
 - We do not have branching fractions or differential distributions at NLO

Need expert help here.

1 photon + MET

FIG. 31: Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times \text{Br}(h \to \chi_1 \chi_2 \to \gamma + E_T)$ from the results of Ref. [355], for $m_{\chi_1} = (0 \text{ GeV}, 20 \text{ GeV}, 40 \text{ GeV}) < m_{\chi_2}$. Solid lines correspond to 100% photon efficiency, and dashed lines to a (flat) 80% photon efficiency.

2 photons + MET

Weak limit from GMSB search

Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times \text{Br}(h \to \chi_2\chi_2 \to 2\gamma + E_T)$

2 photons + MET

FIG. 33: Approximate 95% C.L. upper limit on $(\sigma/\sigma_{SM}) \times \text{Br}(h \to 2\gamma + E_T)$ from the $2\gamma + E_T$ search in [355]. The solid lines correspond to 100% photon efficiency, and the dashed lines to a (flat) 80% photon efficiency. Left: Resonant case, where $h \to aa$, one a decays to $\gamma\gamma$ and the other decays invisibly. Right: Cascade case, where $h \to \chi_1\chi_2$, $\chi_2 \to s\chi_1$, $s \to \gamma\gamma$. Here $m_{\chi_1} = 0$ and $m_{\chi_2} = 60$ GeV (although the limit is insensitive to the particular value of m_{χ_2} as long as it is

2 leptons + MET

FIG. 34: Unit-normalized distributions of $m_T(2\ell, E_T)$. The blue dashed line shows the ATLAS prediction for SM $h \to WW^*$ events passing all selection criteria in both 7 and 8 TeV data sets [372]. The purple dotted line shows the distribution for the BSM $h \to 2\ell + E_T$ events arising from $h \to \chi_2 \chi_1$ at the 8 TeV LHC in the benchmark model described in the text.

$2 \{\mu^+\mu^-\}$ -jets + MET

FIG. 35: Approximate bounds on the branching fraction for $h \to \chi_2 \chi_2$, assuming (left) $\operatorname{Br}(\chi_2 \to a\chi_1) = 1$, and (right) $\operatorname{Br}(\chi_2 \to Z_D \chi_1) = 1$, as a function of m_{χ_1} , from [335]. Here solid lines indicate $m_{\chi_2} = 50$ GeV and dotted lines $m_{\chi_2} = 60$ GeV, while red, green, and blue correspond to $m_{a,Z_D} = 3$ GeV, 1 GeV, and 0.4 GeV respectively. We use tree-level results for $\operatorname{Br}(Z_D \to \mu\mu)$ (see Fig. 13) and a reference $\operatorname{Br}(a \to \mu\mu) = 0.1$ (which can occur in Type IV 2HDM+S models, see Fig. 9).

Dark Sectors (and/or Hidden Valleys)

Sectors of SM Singlets:

- Very little constrained by previous data!
- Motivated by known BSM:
 - Sterile Neutrinos (for neutrino masses)
 - Dark Matter
- Dark Sector (>1 particle) simple if all particles invisible
 - MET signals only

h → invisible

- Phenomenologically identical or similar to minimal case of one particle
- (Partially?) Visible Dark Sector (i.e. Hidden Valley-type)
 - With multiple particles, visible or partially visible decays often possible
 - If interactions, then rich set of phenomenological signatures available

Non-SM Visible h Decays

Non-SM Partly Visible h Decays

Singlets

- Rich singlet sector possible, as complex as SM (Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles...)
 - Minimally constrained by previous data!
- Few SM particles couple to singlets in renormalizable way
 - U(1) hidden gauge boson V coupling to U(1) hypercharge boson (F^{μν}F'_{μν})
 - Scalar S coupling to doublet Higgses (SH*H, S*SH*H)
- But then S or V can couple to other singlets in renormalizable way
 - E.g. Sψψ
- Or additional BSM particles can allow renormalizable couplings
 - E.g. Bino-quark-squark
- Other couplings may be induced by strong dynamics in hidden sector
- Eventually some metastable singlets may decay back to SM particles
 - This can happen promptly or well-displaced inside the LHC detectors

Singlets

Singlets (Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles...)

- Minimally constrained by previous data!
- Often produced in decay of something heavier
- May be stable → MET
- May decay to SM particle pairs → visible
 - Couplings may be very small →
 - Masses may be small
 - Lifetimes may be long
- May decay to other singlets which in turn...

Other MET-less 4-body Decays

- h → aa
 - bb bb
 - bb ττ
 - bb μμ
 - ττ ττ ← Trilepton search
 - ττ μμ ← Trilepton search + dimuon resonance
 - γγ γγ
 - γγ gg
- $h \rightarrow a Z_D, a a'$

Benchmark Model

■ SM x U(1)_X

$$\mathcal{L}_X = -\frac{1}{4}\hat{X}_{\mu\nu}\hat{X}^{\mu\nu} + \frac{\chi}{2}\hat{X}_{\mu\nu}\hat{B}^{\mu\nu}$$

$$\chi \to \frac{\epsilon}{\cos \theta_W}$$

$$\mathcal{L}_{\Phi} = |D_{\mu}\Phi_{SM}|^{2} + |D_{\mu}\Phi_{H}|^{2} + \mu_{\Phi_{H}}^{2}|\Phi_{H}|^{2} + \mu_{\Phi_{SM}}^{2}|\Phi_{SM}|^{2} - \lambda |\Phi_{SM}|^{4} - \rho |\Phi_{H}|^{4} - \kappa |\Phi_{SM}|^{2}|\Phi_{H}|^{2},$$

'dark higgs' Φ_H with $U(1)_X$ charge q_X

Summary of Review

Non-SM decays of h to new particles very well motivated

- We considered low-multiplicity prompt decays of this type
 - Extensive, but by no means a complete survey of non-SM h decays!
- Decays without MET suggest simple benchmark targets
 - $h \rightarrow 2$ spin 1 particles \rightarrow 4 leptons
 - $h \rightarrow 2$ spin 0 particles $\rightarrow 4$ photons
 - h \rightarrow 2 spin 0 particles \rightarrow b/ τ/μ final states
 - Need both NMSSM-like model & model with leptons enhanced
- Decays with MET; story less complete
 - Much more complex; poorly studied; many challenges
 - Most promising: photons + MET, leptons + MET; look ahead to b's + MET
 - Each final state allows various decay chains → several simplified models
 - These include NMSSM, RPV SUSY, many dark matter models