Experimental Overview of the Exotic h_{125} Decays

B. Kaplan (NYU)

December 4, 2015

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

A 30 minute talk is not long enough to give justice to all of them

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

- A 30 minute talk is not long enough to give justice to all of them
- ullet I have chosen to focus on a subset $\Rightarrow h_{125}$ to light, prompt resonances

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

- A 30 minute talk is not long enough to give justice to all of them
- I have chosen to focus on a subset $\Rightarrow h_{125}$ to light, prompt resonances
- For the most part, the ATLAS and CMS results compliment each other

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

- A 30 minute talk is not long enough to give justice to all of them
- I have chosen to focus on a subset $\Rightarrow h_{125}$ to light, prompt resonances
- For the most part, the ATLAS and CMS results compliment each other
- I have chosen 5 searches to discuss today, so excuse the whirlwind!

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

- A 30 minute talk is not long enough to give justice to all of them
- I have chosen to focus on a subset $\Rightarrow h_{125}$ to light, prompt resonances
- For the most part, the ATLAS and CMS results compliment each other
- I have chosen 5 searches to discuss today, so excuse the whirlwind!

Things to Keep in Mind

• Many signatures have low p_T or highly collimated final states

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

- A 30 minute talk is not long enough to give justice to all of them
- I have chosen to focus on a subset $\Rightarrow h_{125}$ to light, prompt resonances
- For the most part, the ATLAS and CMS results compliment each other
- I have chosen 5 searches to discuss today, so excuse the whirlwind!

Things to Keep in Mind

- Many signatures have low p_T or highly collimated final states
 - Not always obvious what to trigger on

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

- A 30 minute talk is not long enough to give justice to all of them
- I have chosen to focus on a subset $\Rightarrow h_{125}$ to light, prompt resonances
- For the most part, the ATLAS and CMS results compliment each other
- I have chosen 5 searches to discuss today, so excuse the whirlwind!

Things to Keep in Mind

- Many signatures have low p_T or highly collimated final states
 - Not always obvious what to trigger on
 - Sometimes difficult to reconstruct final state objects
 (e.g. hadronic tau ID is spoiled if there is another lepton nearby)

NYU ATLAS

Some Musings Before We Begin

A Busy Few Years

• In the few years between the Higgs discovery and the start of Run 2, there have been several published searches

Today's Talk

- A 30 minute talk is not long enough to give justice to all of them
- I have chosen to focus on a subset $\Rightarrow h_{125}$ to light, prompt resonances
- For the most part, the ATLAS and CMS results compliment each other
- I have chosen 5 searches to discuss today, so excuse the whirlwind!

Things to Keep in Mind

- Many signatures have low p_T or highly collimated final states
 - Not always obvious what to trigger on
 - Sometimes difficult to reconstruct final state objects
 (e.g. hadronic tau ID is spoiled if there is another lepton nearby)
 - Recall the coupling limits on BSM decays is O(30%)
 Higgs and Beyond, December 3-5 2015

 B. Kaplan (NYU) benjamin.kaplan@nyu.edu

$h_{125} o ZZ_d$ and Z_dZ_d : Overview Submitted to Phys. Rev. D. arXiv:1505.07645 (ATLAS)

- ullet Model-independent search for h_{125} coupling to dark vector boson states
- ullet Focus on $gg
 ightarrow h_{125}$ and 15 GeV $< m_{Z_d} <$ 60 GeV
- 3 channels: 4μ , 4e and 2μ 2e
- single and dilepton triggers used
- Muons (electrons) must have $p_T >$ 6 GeV (7 GeV) and $|\eta| <$ 2.7 (2.47)
- The 3 leading leptons must satisfy $p_T > 20$, 15 and 10 GeV
- Requires a Higgs candidate: 115 GeV $< m_{4\ell} <$ 130 GeV

$h_{125} \rightarrow ZZ_d$ and Z_dZ_d : Overview cont.

$h_{125} \rightarrow ZZ_d$ and Z_dZ_d : Overview cont.

$$h_{125} \rightarrow ZZ_d$$

- m_{12} defined as SFOS pair with mass closest to m_Z
- $50 < m_{12} < 105 \text{ GeV}$
- Background estimation a mixture of data-driven methods and simulation

$h_{125} \rightarrow ZZ_d$ and Z_dZ_d : Overview cont.

$$h_{125} \rightarrow ZZ_d$$

- m_{12} defined as SFOS pair with mass closest to m_Z
- $50 < m_{12} < 105 \text{ GeV}$
- Background estimation a mixture of data-driven methods and simulation

$$h_{125} \rightarrow Z_d Z_d$$

- Loose signal region requires m_{12} , $m_{34} < m_h/2$, $m_{12} > m_{34}$
- Tight signal region requires $|\Delta m| < 5, 3, 4.5 \text{ GeV}$: $4e,4\mu,2e2\mu$
- Backgrounds from simulation

$h_{125} \rightarrow ZZ_d$: Results

20 30

- Limits are determined by fitting the m_{34} distribution to templates
- The signal is modeled as a Gaussian with resolution determined from simulation
- The background templates are determined from simulation

70

$h_{125} \rightarrow Z_d Z_d$: Results

- The $|\Delta m|$ plot is shown for the loose signal region
- Background is < 0.1 event per channel
- 1 event in the 4e channel with 23.5 GeV $\leq m_{Z_d} \leq$ 26.5 GeV ($|\Delta m| = 6.3$ GeV)
- 1 event in the 4μ channel with 20.5 GeV $\leq m_{Z_d} \leq$ 21.0 GeV $(|\Delta m| = 5.2$ GeV)

$h_{125} ightarrow aa$ or $\gamma_d \gamma_d ightarrow 4\mu$: Overview Submitted to Phys. Lett. B, arXiv:1506.00424 (CMS)

Two interpretations:

- 1. NMSSM: $h o aa o 4\mu$ with $2m_{\mu} < m_a < 2m_{ au}$
- 2. Dark SUSY: $h \to \chi_1^0 \chi_1^0$ with $\chi_1^0 \to \chi_d^0 \gamma_d$ and $\gamma_d \to 2\mu$

Event Selection:

- Events collected with a dimuon trigger
- Require at least 4 isolated* μ with $p_T > 8$ GeV and $|\eta| < 2.4$ scriptsize*The isolation is calculated excluding the muons
- At least one muon with $p_T > 17$ GeV and $|\eta| < 0.9 \; (\mu*)$
- SFOS pairs formed with $m_{1\mu\mu}$ always containing $\mu*$
- $m_{1\mu\mu}$ should be close to $m_{2\mu\mu}$ $|m_{1\mu\mu} - m_{2\mu\mu}| < 0.13 \text{ GeV} + 0.065 (<math>m_{1\mu\mu} + m_{2\mu\mu}$)/2

$h_{125} \rightarrow aa$ or $\gamma_d \gamma_d \rightarrow 4\mu$: Overview cont.

- Background is dominated by $b \bar b$ production
- The 2D $(m_{1\mu\mu},m_{2\mu\mu})$ distribution is determined by fitting templates to a data control sample _
- Normalization of the $bar{b}$ background taken from events where $m_{1\mu\mu}$ is not close to $m_{2\mu\mu}$

$h_{125} \rightarrow aa$ or $\gamma_d \gamma_d \rightarrow 4\mu$: Overview cont.

- Background is dominated by $bar{b}$ production
- The 2D $(m_{1\mu\mu},m_{2\mu\mu})$ distribution is determined by fitting templates to a data control sample _
- Normalization of the $bar{b}$ background taken from events where $m_{1\mu\mu}$ is not close to $m_{2\mu\mu}$
- \bullet The sub-dominant J/ψ background is measured in a data control sample, while the small Drell Yan background is taken from simulation

$h_{125} \rightarrow aa$ or $\gamma_d \gamma_d \rightarrow 4\mu$: Overview cont.

- Background is dominated by $b \bar b$ production
- The 2D $(m_{1\mu\mu},m_{2\mu\mu})$ distribution is determined by fitting templates to a data control sample
- Normalization of the $bar{b}$ background taken from events where $m_{1\mu\mu}$ is not close to $m_{2\mu\mu}$
- \bullet The sub-dominant J/ψ background is measured in a data control sample, while the small Drell Yan background is taken from simulation

- 1 event (triangle) consistent with signal hypothesis (white lines)
- 9 other events observed
- Colored scale indicates the SM background estimate

$h_{125} \rightarrow aa \text{ or } \gamma_d \gamma_d \rightarrow 4\mu$: Results

- NMSSM: Limits on BR(h o aa) better than 0.8 %
- Dark SUSY: Limits indicated as solid black curves $m_{\chi_1^0}$ set to 10 GeV and $m_{\chi_D^0}$ set to 1 GeV

(ϵ is the kinetic mixing parameter and relates the mass of γ_D its lifetime) Higgs and Beyond, December 3-5 2015 B. Kaplan (NYU) benjamin.kaplan@nyu.edu

$h_{125} \rightarrow aa \rightarrow \mu\mu\tau\tau$: Overview Phys. Rev. D92 (2015) 052002 (ATLAS)

- Interpreted in the context of the NMSSM
- Focus on, i.e. optimize selection for, $2 \cdot m_{\tau} < m_a < 2 \cdot m_b$
 - Leptons from a decay will be highly collimated
 - lacksquare Analysis extended above $2 \cdot m_b$ in case couplings to quarks are suppressed
- Coupling related to mass of decay products \Rightarrow large $BR(a \rightarrow \tau \tau)$ at low mass
- $a \rightarrow \mu\mu$ gives a narrow resonance \Rightarrow clean experimental signature

NYU HAS

Analysis Overview $(\mu\mu\tau\tau)$

1. Pre-select $\mu^{\pm}\mu^{\mp}$ events

Strategy: Use $a \rightarrow \mu\mu$ resonance to perform a bump-hunt

- Use single and dimuon triggers
- Require 2 isolated* muons, with $p_T > 16~{\rm GeV}$ *For lower a masses, the muons will be collimated. Correct the isolation variable to account for this
- They must be OS and $p_T(\mu\mu) > 40$ GeV

Analysis Overview ($\mu\mu\tau\tau$)

- 1. Pre-select $\mu^{\pm}\mu^{\mp}$ events 2. Signal Selection: $\mu^{\pm}\mu^{\mp} + \ell^{\pm} \text{trk}^{\mp}$

Detector Signature:

Optimize SR for selecting $a \rightarrow \tau \tau$

- Best sensitivity found for at least one $\tau \to \ell$
- Other τ decay inclusive Require 1, 2, or 3 nearby tracks
- Lead track carries charge of τ \Rightarrow ℓ and leading track are OS
- Two SRs based on ℓ flavor

Analysis Overview ($\mu\mu\tau\tau$)

- 1. Pre-select $\mu^{\pm}\mu^{\mp}$ events
- 2. Signal Selection: $\mu^{\pm}\mu^{\mp} + \ell^{\pm} trk^{\mp}$
- 3. Validation: $\mu^{\pm}\mu^{\mp} + \ell^{\pm} \operatorname{trk}^{\pm}$

Detector Signature:

Test methods in validation regions

- Invert OS requirement on ℓ and leading track
- Comparable backgrounds, but no signal
- Two VRs based on ℓ flavor

NYU ATLAS

Analysis Overview $(\mu\mu\tau\tau)$

- 1. Pre-select $\mu^{\pm}\mu^{\mp}$ events
- 2. Signal Selection: $\mu^{\pm}\mu^{\mp} + \ell^{\pm} trk^{\mp}$
- 3. Validation: $\mu^{\pm}\mu^{\mp} + \ell^{\pm} \operatorname{trk}^{\pm}$
- 4. Control: $\mu^{\pm}\mu^{\mp}$ +(b-)jets

Detector Signature:

Measure backgrounds in control regions

- Replace $\tau\tau$ selection with jets
- Two CRs for light- and heavy- flavor backgrounds

Fitting Strategy $(\mu\mu\tau\tau)$

Perform a bump hunt in $m_{\mu\mu}$ from 3.7 to 50 GeV in SRs

- Background and signal models measured in the data!
- Use simulation to study shapes
- Need a robust background model for entire mass range
 - 1. Non-resonant background (mainly DY)
 - 2. $t\bar{t}$ background
 - 3. SM $(J/\psi, \Upsilon, Z)$
 - The ${\mathrm J}/\psi$ is used to constrain the ψ'
 - The low-end Z tail can be significant above 40 GeV
 - All resonances assumed to have a narrow width
- Use a common shape for all narrow $\mu\mu$ resonances

The Narrow $\mu\mu$ Resonances $(\mu\mu\tau\tau)$

$X ightarrow \mu \mu$ Double-Sided Crystal Ball

- Gaussian core, low- and high-end power laws
- 3 free parameters, μ_{CB} , σ_{CB} , α_{CB} measured in data
- Mean (μ_{CB}) , width (σ_{CB}) linearly depend on m_X
- Tested on 24 signal samples*, varying m_a and m_H
- Fit to SM resonances in data shown below

* Details on signal shape (low mass tail and systematics) can be found in the backup

NYU ATUS

Background Measurement $(\mu\mu\tau\tau)$

CRj:
$$\tau \tau (\ell + trk) \Rightarrow \geq 1$$
 jet

Results used to constrain fit to SRs

Some details...

CRb: $\tau \tau (\ell + trk) \Rightarrow \geq 2$ b-jets

- Resonant backgrounds $(J/\Psi, \Upsilon, Z)$ use a double-sided Crystal Ball
 - \blacksquare Three CB parameters shared with $a \to \mu \mu$ resonance
 - Drell–Yan background modeled by $P_{\gamma^*}=\mathrm{e}^{lpha_{\gamma^*}\cdot m_{\mu\mu}}\,(m_{\mu\mu})^{n_{\gamma^*}}$
- $t\bar{t}$ modeled by Rayleigh distribution: $P_{tt} = m_{\mu\mu} \times Gaus(m_{\mu\mu}|\mu_{tt} = 0, \sigma_{tt})$ Higgs and Beyond, December 3-5 2015

 B. Kaplan (NYU) benjamin.kaplan@nyu.edu

Results: Fit to Signal Region $(\mu\mu\tau\tau)$

Constrained from Fit to CR

- Background shape parameters (2 for γ^* , 1 for $t\bar{t}$, multiple for SM resonances)
- Relative contributions of higher Ψ and Υ spin states
- Relative contribution of Z to total Z/γ^*

Unconstrained:Relative contributions of Ψ , Υ , $t\bar{t}$ and Z/γ^*

Results: Statistical Analysis $(\mu\mu\tau\tau)$

- Observation consistent with SM
- Min p-value = 0.022 for $m_{\mu\mu} = 8.65$ GeV
- Global p-value > 0.5
- Upper limit on BR(h o aa) as low as 3.5% for $m_a=3.75$ GeV, $m_h=125$ GeV

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau$: Overview Submitted to JHEP, arXiv:1510.0634 (CMS)

- Search in interpreted in the context of the NMSSM
- The lightest Higgs boson $\phi_1=a_1$ or h_1 and $h_{125}=h_1$ or h_2
- The target of the analysis is 4 GeV $< m_{\phi_1} < 8$ GeV

• The low mass of the ϕ_1 causes the τ 's to be collimated

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau$: Analysis Strategy

Event Selection:

- Require at least two $\tau \to \mu + 2\nu$
- Require 2 SS muons
 - greatly reduces the background
 - **picks** 1 μ from each ϕ_1
- ullet Other au selected as a single track

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau$: Analysis Strategy

Event Selection:

- Require at least two $au o \mu + 2
 u$
- Require 2 SS muons
 - greatly reduces the background
 - \blacksquare picks 1 μ from each ϕ_1
- Other τ selected as a single track

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau$: Analysis Strategy

Event Selection:

- Require at least two $au o \mu + 2
 u$
- Require 2 SS muons
 - greatly reduces the background
 - \blacksquare picks 1 μ from each ϕ_1
- Other τ selected as a single track

More details:

- A dilepton trigger is used to collect events
- Leading μ $p_T > 17$ GeV, sub-leading with $p_T > 10$ GeV
- Each μ is requried to have exactly 1 track with $p_T > 1$ GeV
- The background shape and normalization determined in data control samples

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau$: Results

- Each event contributes two entries to the left plot
- ullet XS limit corresponds to a BR of 23 to 53% for SM $gg
 ightarrow h_{125}$

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau \text{ (V2)}$: Overview CMS-PAS-HIG-14-022 (CMS Preliminary)

- A second analysis from CMS has recently been made public
- Instead of selecting μ + track, the τ reconstruction algorithm is modified
 - The jet seed to the algorithm must have a nearby low p_T (> 5 GeV) muon, τ_μ
 - The result of the τ reconstruction is labeled τ_X
 - The ϕ_1 candidate is then the $\tau_\mu \tau_X$ system
- Events are collected with the single muon trigger
 - \Rightarrow Events must have a muon with $p_T >$ 25 GeV (μ_{trg})

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau \text{ (V2)}$: Results

Backgrounds extrapolated from data control regions

$h_{125} \rightarrow \phi_1 \phi_1 \rightarrow 4\tau \text{ (V2)}$: Results

Strongest limit on BR set at 11 GeV to be 16.5%

$h_{125} ightarrow aa ightarrow 4\gamma$: Overview Submitted to EPJC, arXiv:1509.05051 (ATLAS)

- The paper explores sevral BSM sources of multi-photon events
- For this, talk I'll focus on the NMSSM with $h \rightarrow aa$ and $a \rightarrow \gamma\gamma$
- Considered m_a from 10 to 62 GeV
- Events are reuqired to have at least 3 photons with 2 above 22 GeV and 1 above 17 GeV

$h_{125} ightarrow aa ightarrow 4\gamma$: Overview Submitted to EPJC, arXiv:1509.05051 (ATLAS)

- The paper explores sevral BSM sources of multi-photon events
- For this, talk I'll focus on the NMSSM with $h \rightarrow aa$ and $a \rightarrow \gamma\gamma$
- Considered m_a from 10 to 62 GeV
- Events are reuqired to have at least 3 photons with 2 above 22 GeV and 1 above 17 GeV
- At the lower masses, the photons will be collimated, spoiling any isolation requirements

$h_{125} ightarrow aa ightarrow 4\gamma$: Overview Submitted to EPJC, arXiv:1509.05051 (ATLAS)

- The paper explores sevral BSM sources of multi-photon events
- For this, talk I'll focus on the NMSSM with $h \rightarrow aa$ and $a \rightarrow \gamma\gamma$
- Considered m_a from 10 to 62 GeV
- Events are reuqired to have at least 3 photons with 2 above 22 GeV and 1 above 17 GeV
- At the lower masses, the photons will be collimated, spoiling any isolation requirements
- This is fixed by removing overlapping photons (0.15 $< \Delta R <$ 0.4)

• Dominated by direct multi-photon production and QCD

- Dominated by direct multi-photon production and QCD
- QCD backgrounds are estimated with a data-driven extrapolation, the rest are taken from simulation

- Dominated by direct multi-photon production and QCD
- QCD backgrounds are estimated with a data-driven extrapolation, the rest are taken from simulation
- ullet Events with at least 3γ are sorted by their islation (pass/fail)

- Dominated by direct multi-photon production and QCD
- QCD backgrounds are estimated with a data-driven extrapolation, the rest are taken from simulation
- ullet Events with at least 3γ are sorted by their islation (pass/fail)
- Normalizations are from a fit to the observed data

- No significant excess is seen across the scanned mass range
- Limits on the BR below 1 pm assuming SM production

Other Interesting Searches

$h_{125} \rightarrow \gamma + \mathbb{E}_{\mathrm{T}}$

- 1. ATLAS Conference proceedings (ATLAS-CONF-2015-001)
 - GMSB ($h_{125} \rightarrow G\chi_1^0 \rightarrow GG\gamma$ or $h_{125} \rightarrow \chi_1^0\chi_1^0 \rightarrow G\gamma G\gamma$) and NMSSM ($h \rightarrow \chi_2^0\chi_1^0 \rightarrow \chi_1^0\gamma\chi_1^0$ or $h \rightarrow \chi_2^0\chi_2^0 \rightarrow \gamma\chi_1^0\gamma\chi_1^0$)
 - VBF production used to reduce backgrounds
 - 95% C.L. upper limits from 20 to 80% for $\chi^0_{2(1)}$ from 65 to 120 GeV (1γ)
 - 95% C.L. upper limits from 20 to 30% for $\chi^0_{2(1)}$ from 1 to 60 GeV (2γ)
- 2. CMS Paper (Submitted to Phys. Lett. B, arXiv:1507.00359)
 - lacksquare GMSB $(h_{125} o G\chi_1^0 o GG\gamma)$
 - Events for $gg \rightarrow h_{125}$ collected during "data parking" program (7.4 fb⁻¹)
 - Full 2012 dataset used for Zh₁₂₅ channel
 - 95% C.L. upper limits from 7 to 13% for χ_1^0 between 1 and 120 GeV

NYU ATLAS

Other Interesting Searches

Displaced Signatures

- 1. Hidden Valley: $h_{125} \rightarrow \pi_{\nu} \pi_{\nu} \rightarrow \text{displaced jets (ATLAS)}$
 - Decays in the hadronic calorimeter (Phys. Lett. B 743, 15 (2015))
 Sensitivty to lifetimes from 0.1 to 10 m
 - Decays in the Muon Spectrometer (Submitted to PRD. arXiv:1504.03634))
 Similar range, but more sensitive at longer lifetimes
- 2. Dark photons: $h_{125} o f_d f_d o \gamma_d \gamma_d + E_T o$ displaced lepton jets
 - From last pixel layer to the hadronic calorimeter for electrons
 - From last pixel layer to the muon spectrometer for muons
 - Sensitivity to lifetimes from 1 cm to 1 m (JHEP11(2014)088)

NYU STLAS

What to Expect in Run 2

New Channels

• It will be intersting to see results for $h \to aa \to 4b, 2b2\mu, 2b2\tau$, etc.

NYU STLAS

What to Expect in Run 2

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

• h_{125} production XS has gone up, but so have the SM backgrounds

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

- h_{125} production XS has gone up, but so have the SM backgrounds
- No heavy state \Rightarrow S/B does not change much

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

- h_{125} production XS has gone up, but so have the SM backgrounds
- No heavy state \Rightarrow S/B does not change much

More Challenging Conditions

NYU HAS

What to Expect in Run 2

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

- h_{125} production XS has gone up, but so have the SM backgrounds
- No heavy state \Rightarrow S/B does not change much

More Challenging Conditions

Increase in luminosity ⇒ higher threshold triggers

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

- h_{125} production XS has gone up, but so have the SM backgrounds
- No heavy state \Rightarrow S/B does not change much

More Challenging Conditions

- Increase in luminosity ⇒ higher threshold triggers
- Increase in pileup ⇒ noisier environment

NYU HAS

What to Expect in Run 2

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

- h_{125} production XS has gone up, but so have the SM backgrounds
- No heavy state \Rightarrow S/B does not change much

More Challenging Conditions

- Increase in luminosity ⇒ higher threshold triggers
- Increase in pileup ⇒ noisier environment

The Bottom Line

NYU STAS

What to Expect in Run 2

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

- h_{125} production XS has gone up, but so have the SM backgrounds
- No heavy state \Rightarrow S/B does not change much

More Challenging Conditions

- Increase in luminosity ⇒ higher threshold triggers
- Increase in pileup ⇒ noisier environment

The Bottom Line

These types of searches have only gotten more challenging in Run 2

New Channels

• It will be intersting to see results for $h \rightarrow aa \rightarrow 4b, 2b2\mu, 2b2\tau$, etc.

Increase in Energy

- h_{125} production XS has gone up, but so have the SM backgrounds
- No heavy state \Rightarrow S/B does not change much

More Challenging Conditions

- Increase in luminosity ⇒ higher threshold triggers
- Increase in pileup ⇒ noisier environment

The Bottom Line

- These types of searches have only gotten more challenging in Run 2
- Need $O(10 {
 m fb}^{-1})$ to acheive the same sensitivity as Run 1

Stay Tuned for 2016!

