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ALICE

LHCbLHC ring at CERN:
27 km circumference

SPS ring:
7 km circumference

So far: 
0.9 / 2.8 / 5 / 7 / 8 / 13 TeV proton—proton collisions

2.8 / 5 TeV Pb—Pb collisions
5 TeV p—Pb collisions

CERN (Meyrin site)

ATLAS
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Run-1

7 & 8 TeV pp, 5 & 20 fb–1

A few highlights, with apologies to CMS for showing a bit more ATLAS here, for convenience 
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Harvest of Run-1 results (approaching 500 papers / exp) confirming predictive power of SM
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Run-1 is not over yet: 
high-quality, extremely 
well understood data 
sample for precision 
measurements

Note !
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Numerous Standard Model measurements have driven QCD tests at hadron colliders 
to a new quality, accompanying new theoretical developments

And allowed to progress on critical electroweak studies 
related to the scalar sector 
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Strong production

Precise tests of NLO matrix element 
calculations matched to parton shower 
models
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Dilepton tt cross-section measurement 
[ ATLAS, EPJ C 74, 3109 (2014) ] 

tt+W/Z: 7.1σ combined significance 
[ ATLAS 1509.05276 ] 
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Precision test of NNLO QCD, 
used to derive the top mass 
and new physics limits

Luminosity and centre-of-mass 
energy open phase space to 
observe rare tt + vector-boson 
production  

Top quark production has been studies with unprecedented experimental precision 
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 [GeV]topm
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ATLAS+CMS Preliminary  = 7-8 TeVs summary, topmLHCtopWG

shown below the line
(*) Superseded by results

Sep 2015
World Comb. Mar 2014, [7]

 0.67) GeV± 0.76 (0.36 ± = 173.34 topm

stat
total uncertainty total  stat

    Ref.s                                syst) ± total (stat ± topm

ATLAS, l+jets (*) 7 TeV  [1] 1.35)± 1.55 (0.75 ±172.31 
ATLAS, dilepton (*) 7 TeV  [2] 1.50)± 1.63 (0.64 ±173.09 
CMS, l+jets 7 TeV  [3] 0.97)± 1.06 (0.43 ±173.49 
CMS, dilepton 7 TeV  [4] 1.46)± 1.52 (0.43 ±172.50 
CMS, all jets 7 TeV  [5] 1.23)± 1.41 (0.69 ±173.49 
LHC comb. (Sep 2013) 7 TeV  [6] 0.88)± 0.95 (0.35 ±173.29 
World comb. (Mar 2014) 1.96-7 TeV  [7] 0.67)± 0.76 (0.36 ±173.34 
ATLAS, l+jets 7 TeV  [8] 1.02)± 1.27 (0.75 ±172.33 
ATLAS, dilepton 7 TeV  [8] 1.30)± 1.41 (0.54 ±173.79 
ATLAS, all jets 7 TeV  [9] 1.2)± 1.8 (1.4 ±175.1 
ATLAS, single top 8 TeV  [10] 2.0)± 2.1 (0.7 ±172.2 

)l+jets, dil.
Mar 2015(ATLAS comb.  7 TeV  [8] 0.78)± 0.91 (0.48 ±172.99 

CMS, l+jets 8 TeV  [11] 0.48)± 0.51 (0.16 ±172.35 
CMS, dilepton 8 TeV  [11] 1.22)± 1.23 (0.19 ±172.82 
CMS, all jets 8 TeV  [11] 0.59)± 0.64 (0.25 ±172.32 
CMS comb. (Sep 2015) 7+8 TeV  [11] 0.47)± 0.48 (0.13 ±172.44 

[1] ATLAS-CONF-2013-046 [7] arXiv:1403.4427

[2] ATLAS-CONF-2013-077 [8] Eur.Phys.J.C (2015) 75:330

[3] JHEP 12 (2012) 105 [9] Eur.Phys.J.C75 (2015) 158

[4] Eur.Phys.J.C72 (2012) 2202 [10] ATLAS-CONF-2014-055

[5] Eur.Phys.J.C74 (2014) 2758 [11] CMS PAS TOP-14-022

Newest top mass combination 
from CMS features total 
uncertainty of 480 MeV  
[ CMS, 1509.04044 ] 

640 MeV for Tevatron combination,           
ATLAS has no 8 TeV result yet

Important theoretical 
discussion on non-
perturbative uncertainties

Alternative, but less precise, 
mtop determinations via 
cross-section measurements 

Similarly for top-quark properties

Top mass measurements
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Top cross-sections 
significantly enhanced 
at LHC wrt Tevatron:   
at 8 TeV, factors of 42 
(t-channel), 31 (tt ), but 
only 5 for s-channel     
(ie, worse S/B at LHC)

s-channel process first observed at 
Tevatron with 6.3σ in agreement with 
SM prediction
[ CDF & D0, 1402.5126 ] 

Single-top production and property measurements
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ATLAS reported 3.2σ (3.9σ exp.) 
evidence in agreement with SM              
[ ATLAS, 1511.05980 ] 

t-channel already measured 
differentially 
[ ATLAS, 1406.7844, CMS 1511.02138 ]
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 at NLOttσ and Wtσ
 DR CT10ERWIGMC@NLO+H
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 DR MSTW2008ERWIGMC@NLO+H

 at NLOttσ and Wtσ
 DR NNPDF 2.3ERWIGMC@NLO+H

Predicted fiducial cross-sections:

 cross-sectiontMeasured fiducial Wt+t
 Total uncertainty
 Stat. uncertainty

ATLAS -1 = 8 TeV, 20.3 fbs

Wt channel observed with 7.7σ
[ ATLAS, 1510.03752, CMS 1401.2942 ]
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W mass

No LHC result yet 

World average value dominated by Tevatron measurements : 80.387 ± 0.016 GeV
[ CDF & D0, 1204.0042 ] 

2 Update of the global electroweak fit 8

of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find

↵s(M
2
Z) = 0.1196± 0.0028 exp ± 0.0006�

theo

RV,A
± 0.0006�

theo

�i
± 0.0002�

theo

�0

had

= 0.1196± 0.0030 tot , (1)

where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be

MW = 80.3584± 0.0046mt ± 0.0030�
theo

mt ± 0.0026MZ
± 0.0018�↵

had

± 0.0020↵S ± 0.0001MH
± 0.0040�

theo

MW
GeV ,

= 80.358± 0.008tot GeV . (2)

providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
theo

mt ± 0.000015MZ
± 0.000035�↵

had

± 0.000010↵S ± 0.000001MH
± 0.000047

�
theo

sin2✓f
e↵

,

= 0.23149± 0.00007tot , (3)

where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M

2
Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak
fit without using MW , sin2✓fe↵ , MH and the Z width measurements; orange for the fit without

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.

Standard Model prediction:
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ATLAS & CMS 
Combinations of Higgs 
mass and coupling 
measurements
[ arXiv:1503.07589,         
ATLAS-CONF-2015-044            
& CMS-PAS-HIG-15-002 ] 

Framework:))Higgs)couplings)O>)BSM)

July)7,)2015) E.)Feng)(CERN))O)New)Physics)via)Higgs)Couplings)&)Invisible)Decays) 6)

•  Assume)a)single)narrow,)CPOeven)resonance)of)mass)125.36)GeV)
•  DeviaFons)from)SM)Higgs)parametrized)using)

scaling)factors)κ)))(SM:))κ=1))

•  LoopsOinduced)couplings)can)be)resolved)or)leg)as)“effecFve”)couplings)
)

•  Couplings*are*then*re0expressed*in*terms*of*BSM*parameters*in*each*model*
•  For)example)Higgs)compositeness)scale)f,)mA)and)tan)β)in)hMSSM,)etc))
•  Then)fit)is)redone)including)full)correlaFons)in)systemaFcs,)not)just)reO
interpretaFon)of)public)numbers)

ProducFon) Decay) Width)

Discovery of an elementary (?) scalar boson and flurry of property measurements  
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Also: 
• Differential cross-section measurements
• Limit on invisible Higgs branching ratio of < 25% 

[1509.00672, 1404.1344 ]

• Constraints on anomalous off-shell coupling or 
spin/CP, forbidden decays (FCNC) and other 
scalar particles (BSM Higgs)

Higgs production processes

Higgs decay processes
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Higgs as BSM portal

Framework:))Higgs)couplings)O>)BSM)

July)7,)2015) E.)Feng)(CERN))O)New)Physics)via)Higgs)Couplings)&)Invisible)Decays) 6)

•  Assume)a)single)narrow,)CPOeven)resonance)of)mass)125.36)GeV)
•  DeviaFons)from)SM)Higgs)parametrized)using)

scaling)factors)κ)))(SM:))κ=1))

•  LoopsOinduced)couplings)can)be)resolved)or)leg)as)“effecFve”)couplings)
)

•  Couplings*are*then*re0expressed*in*terms*of*BSM*parameters*in*each*model*
•  For)example)Higgs)compositeness)scale)f,)mA)and)tan)β)in)hMSSM,)etc))
•  Then)fit)is)redone)including)full)correlaFons)in)systemaFcs,)not)just)reO
interpretaFon)of)public)numbers)

ProducFon) Decay) Width)

Discovery of an elementary (?) scalar boson and flurry of property measurements  
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For comparison:
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Even small couplings 
to new light states can 
measurably distort 
branching fractions

?
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Flurry of beautiful results from LHCb [ almost 300 papers to date ] 

Beautiful flavour and low-pT physics measurements

Data
Fit result

Pc(4450)+

Pc(4380)+

? or      ? or … ?

Observation of new states 
consistent with pentaquarks
[ PRL 115, 072001 (2015) ]

Precision measurement of 𝜙s
[ PRL 114, 041801 (2015) ]

CMS & LHCb: 
observation of 
Bs → µµ 
[ Nat. 522 (2015) 68 ]
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Beautiful flavour and low-pT physics measurements

γ
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The “bread-and-butter” 
CKM phase measurements 
continue to improve

Measurements of γ, sin(2β), 
|Vub|, Δms/d from LHCb
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Flavour anomalies ?

Test of lepton flavour universality: R (X ) = Γ(B → X τ ν) / Γ(B → X ℓ ν) 

Robust theoretical prediction

R(D)
0.2 0.4 0.6

BaBar

 0.042± 0.058 ±0.440 

Belle

 0.026± 0.064 ±0.375 

Average 

 0.028± 0.041 ±0.391 

SM prediction 

 0.017±0.297 

HFAG
Prel. EPS15

/dof = 0.4/ 1 (CL = 52.00 %)2χ

R(D*)
0.2 0.3 0.4

BaBar
 0.018± 0.024 ±0.332 

Belle
 0.015± 0.038 ±0.293 

LHCb
 0.030± 0.027 ±0.336 

Average 
 0.012± 0.018 ±0.322 

SM prediction
 0.003±0.252 

HFAG
Prel. EPS15

/dof = 0.4/ 1 (CL = 52.00 %)2χ

~ 3.0σ ~ 1.7σ

(3.9σ combined)

HFAG, semileptonic combination for EPS-HEP 2015: http://www.slac.stanford.edu/xorg/hfag/semi/eps15/eps15_dtaunu.html
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Striking phenomena observed,     
e.g. in lead–lead collisions and    
soft pp physics

[ ATLAS, PRL 105, 252303 (2010) ]
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GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 cτ(NLSP)<0.1 mm 1507.054931.29 TeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 m(χ̃
0
1)<900 GeV, cτ(NLSP)<0.1 mm, µ<0 1507.054931.3 TeVg̃

GGM (higgsino-bino NLSP) γ 2 jets Yes 20.3 m(χ̃
0
1)<850 GeV, cτ(NLSP)<0.1 mm, µ>0 1507.054931.25 TeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 2 jets Yes 20.3 m(NLSP)>430 GeV 1503.03290850 GeVg̃

Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃g̃, g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<400 GeV 1407.06001.25 TeVg̃

g̃g̃, g̃→tt̄χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃g̃, g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<400 GeV 1407.06001.34 TeVg̃

g̃g̃, g̃→bt̄χ̃
+

1 0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ̃

±
1 )=2 m(χ̃

0
1) 1404.2500275-440 GeVb̃1

t̃1 t̃1, t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7/20.3 m(χ̃

±
1 ) = 2m(χ̃

0
1), m(χ̃

0
1)=55 GeV 1209.2102, 1407.0583110-167 GeVt̃1 230-460 GeVt̃1

t̃1 t̃1, t̃1→Wbχ̃
0
1 or tχ̃

0
1

0-2 e, µ 0-2 jets/1-2 b Yes 20.3 m(χ̃
0
1)=1 GeV 1506.0861690-191 GeVt̃1 210-700 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-240 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-580 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-600 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃
0
1

2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-325 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+

1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-465 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+

1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃
0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350100-350 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029700 GeVχ̃±

1 ,
χ̃0
2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0-2 jets Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ̃±

1 ,
χ̃0
2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1, h→bb̄/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1501.07110250 GeVχ̃±

1 ,
χ̃0
2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086620 GeVχ̃0

2,3

GGM (wino NLSP) weak prod. 1 e, µ + γ - Yes 20.3 cτ<1 mm 1507.05493124-361 GeVW̃

Direct χ̃
+

1 χ̃
−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )=0.2 ns 1310.3675270 GeVχ̃±

1

Direct χ̃
+

1
χ̃−
1 prod., long-lived χ̃

±
1 dE/dx trk - Yes 18.4 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )<15 ns 1506.05332482 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

Stable g̃ R-hadron trk - - 19.1 1411.67951.27 TeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 20.3 2<τ(χ̃
0
1)<3 ns, SPS8 model 1409.5542435 GeVχ̃0

1

g̃g̃, χ̃
0
1→eeν/eµν/µµν displ. ee/eµ/µµ - - 20.3 7 <cτ(χ̃

0
1)< 740 mm, m(g̃)=1.3 TeV 1504.051621.0 TeVχ̃0

1

GGM g̃g̃, χ̃
0
1→ZG̃ displ. vtx + jets - - 20.3 6 <cτ(χ̃

0
1)< 480 mm, m(g̃)=1.1 TeV 1504.051621.0 TeVχ̃0

1

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ - - 20.3 λ′
311

=0.11, λ132/133/233=0.07 1503.044301.7 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+

1→Wχ̃
0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121!0 1405.5086750 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+

1→Wχ̃
0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133!0 1405.5086450 GeVχ̃±

1

g̃g̃, g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% 1502.05686917 GeVg̃

g̃g̃, g̃→qχ̃
0
1, χ̃

0
1 → qqq 0 6-7 jets - 20.3 m(χ̃

0
1)=600 GeV 1502.05686870 GeVg̃

g̃g̃, g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

t̃1 t̃1, t̃1→bs 0 2 jets + 2 b - 20.3 ATLAS-CONF-2015-026100-308 GeVt̃1

t̃1 t̃1, t̃1→bℓ 2 e, µ 2 b - 20.3 BR(t̃1→be/µ)>20% ATLAS-CONF-2015-0150.4-1.0 TeVt̃1

Scalar charm, c̃→cχ̃
0
1 0 2 c Yes 20.3 m(χ̃

0
1)<200 GeV 1501.01325490 GeVc̃

Mass scale [TeV]10−1 1

√
s = 7 TeV

√
s = 8 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: July 2015

ATLAS Preliminary
√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.
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Theory-agnostic, signature based 
searches, as well as naturalness 
driven, highly targeted model-
dependent ones

Not unexpectedly, a few of these 
searches ended up showing some 
(non-significant) anomaly, a legacy to 
check in Run-2  

Vast amount of BSM searches — with no significant anomaly seen so far
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=(700,200)GeVµ),g~m(
=(900,600)GeVµ),g~m(

2L(Z) + MET
[ ATLAS, arXiv:1503.03290 ] 

A few early papers with ideas:
http://arxiv.org/abs/1504.02244
http://arxiv.org/abs/1506.04435
http://arxiv.org/abs/1504.01768
http://arxiv.org/abs/1503.04184
… 

A few early papers with ideas:
http://arxiv.org/abs/1507.01601
http://arxiv.org/abs/1507.01923
… 

2L(SS) + b-jets + HT + MET 
[ ATLAS, arXiv:1504.04605 ] 

Diboson resonance (VV’ → JJ)
[ ATLAS, arXiv:1506.00962 ] 

A few early papers with ideas:
http://arxiv.org/abs/1506.04392
http://arxiv.org/abs/1506.06736
http://arxiv.org/abs/1506.03931
http://arxiv.org/abs/1506.03751
http://arxiv.org/abs/1507.06312
…

Not unexpectedly, a few of these searches ended up showing some anomaly,                            
a legacy to check in Run-2 (shown here: ATLAS examples)  
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Broad search coverage — not only the standard signatures

Run-1 “tour de force” analysis of pMSSM 
[ ATLAS, 1508.06608 ] 

Combined use of 22 
separate ATLAS SUSY 
searches in addition                  
to external constraints                  
(mH, EWPO, flavour, LEP 
searches, dark matter)               
to probe 19 parameter 
pMSSM

Distinction of LSP types: 
bino, wino, higgsino

Analysis overall reproduces 
simplified models picture

Higgsino/wino scenarios              
biggest challenge

Analysis All LSPs Bino-like Wino-like Higgsino-like

0-lepton + 2–6 jets + Emiss
T 32.1% 35.8% 29.7% 33.5%

0-lepton + 7–10 jets + Emiss
T 7.8% 5.5% 7.6% 8.0%

0/1-lepton + 3b-jets + Emiss
T 8.8% 5.4% 7.1% 10.1%

1-lepton + jets + Emiss
T 8.0% 5.4% 7.5% 8.4%

Monojet 9.9% 16.7% 9.1% 10.1%

SS/3-leptons + jets + Emiss
T 2.4% 1.6% 2.4% 2.5%

⌧(⌧/`) + jets + Emiss
T 3.0% 1.3% 2.9% 3.1%

0-lepton stop 9.4% 7.8% 8.2% 10.2%

1-lepton stop 6.2% 2.9% 5.4% 6.8%

2b-jets + Emiss
T 3.1% 3.3% 2.3% 3.6%

2-leptons stop 0.8% 1.1% 0.8% 0.7%

Monojet stop 3.5% 11.3% 2.8% 3.6%

Stop with Z boson 0.4% 1.0% 0.4% 0.5%

tb+Emiss
T , stop 4.2% 1.9% 3.1% 5.0%

`h, electroweak 0 0 0 0

2-leptons, electroweak 1.3% 2.2% 0.7% 1.6%

2-⌧ , electroweak 0.2% 0.3% 0.2% 0.2%

3-leptons, electroweak 0.8% 3.8% 1.1% 0.6%

4-leptons 0.5% 1.1% 0.6% 0.5%

Disappearing Track 11.4% 0.4% 29.9% 0.1%

Long-lived particle 0.1% 0.1% 0.0% 0.1%

H/A ! ⌧+⌧� 1.8% 2.2% 0.9% 2.4%

Total 40.9% 40.2% 45.4% 38.1%
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Broad search coverage — not only the standard signatures
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All experiments looked for various types of long-lived massive particles
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Run-2

13 TeV

Complete overview of results, apologies for omitting analysis details 
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Life in 2015: 13 TeV / 8 TeV inclusive pp cross-section ratio

1 10 100 1000 10000 

QBH (6 TeV) 
QBH (5 TeV) 

Q* (4 Tev) 
Z' SSM (3 TeV) 

gluino pair (1.5 TeV) 
stop pair (0.7 TeV) 

A(0.5 TeV, ggF+bbA) 
ttH 
ttZ 
tt 

H (VBF) 
H (ggF) 

WH 
t (t-channel) 
t (s-channel) 

ZZ 
Z(ll) 

W(ln) 
Minimum bias 
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13#TeV#/#8#TeV#inclusive#pp#cross3sec4on#ra4o#

At 1034 cm–2 s–1 @ 13 TeV 
pp the LHC produces:
- 200 Hz W → ℓ ν
- 19 Hz Z → ℓℓ
- 8 Hz top pair
- 0.5 Hz Higgs

𝐾$%/' ≡ 	

𝑆$%
𝐵$%

,

𝑆'
𝐵'

,
= 𝑘/

𝑘0
𝑘1

13/8 TeV sensitivity formula:

where	ki =	13/8	ratio,	and	
i =	Signal,	 Background,	Luminosity

E.g.: K13/8 = 0.87 for ttH3.3/fb



Shown by Mike Lamont at Lepton-Photon 2015
Fitzcarraldo moving a steamer over a muddy hill … (on his quest for money to build an opera house in the peruvian jungle)

Long-Shutdown 1 
Preparing Run-2



April May June July August September

3rd Apr Completion of PT campaign

5th Apr First circulating beam

10th Apr 6.5 TeV for the first time (ever!)

3rd June First STABLE BEAMS!

Intense	beam	
commissioning	phase

1.6 × 1033 cm–2 s–1

14th July 476b (50 ns)

TS-1 MD-2	+	TS-2

30th June end of scrubbing for 50 ns

MD-1

7th Aug end scrubbing for 25 ns

21st Sep 25 ns STABLE BEAMS 
with 1177 bunches/beam

23

Since then, Oct/Nov:

• 2232 colliding 
bunches in 
ATLAS/CMS

• Lmax of 5.2・1033

• Nov 4: MD/TS-3

• Nov 20: Ions

2.7 × 1033 cm–2 s–1

2015 LHC operation at a glance 
From: Matteo Solfaroli, LHCC open session, Sep 23, 2015
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 = 13 TeVs     ATLAS Online Luminosity

LHC Delivered
ATLAS Recorded

-1Total Delivered: 4.34 fb
-1Total Recorded: 4.00 fb

Peak luminosity: 
Lmax = 5.2 × 1033 cm–2 s–1 

2015 LHC proton–proton luminosities
Results reported today only use summer datasets (up to LHCP 2015, max. of 85 pb–1)

LHCb after luminosity levelling: 0.32 (0.36) fb–1 recorded (delivered) 

Luminosity measurements calibrated with “mini” beam-separation scans in ATLAS/CMS: σ= 9% (ATLAS), 
12/4.8% (CMS), and with the beam-gas imaging method in LHCb: 3.9% (!). Differences in amount of 
delivered luminosity between ATLAS and CMS under scrutiny by experiments

Pileup profiles: ATLAS/CMS: <µ>50 ns = 20, <µ>25 ns = 13  (<µ>8TeV = 21), LHCb: <µ> ~ 1.7

Total in 2015 (recorded): 
• B = 3.8 T: 2.9 fb–1

• B ≠ 3.8 T: 0.8 fb–1

(due to problem with cryogenic supply)

3.3 fb–1 for physics 2.4 fb–1 for physics



Side A Side CZ = 0

3D3D Planar Planar

R29.0/R29.3 - IPT
R23.5 - Inner beam-pipe
R31.0 - IBL inner envelope
R40.0 - IBL outer envelope
R33.5 - Module radius Stave

FE-I4B chip

3D sensor

DŽĚƵůĞ�ŇĞǆ

&ůĞǆ�ƉŝŐƚĂŝů

^ƚĂǀĞ�ŇĞǆ

3D - HV TAB
EXTENSION

a)#

b)# c)#

Sensor#area#[mm2]:####41.3#x#19.2####################20.5#x#18.5#
No.#of#pixels#[z,#φ]:#######160#x#336#########################80#x#336#

Figure 1. (a) Stave layout with the organization of planar and 3D sensor modules. (b) Layout of the IBL
detector with the 14 staves around the IBL positioning tube (IPT) and (c) zoom of one stave side where a 3D
sensor module is visibile.

in the central region and 3D in the forward/backward part, where tracking would benefit of a more
uniform charge collection across the sensor depth after irradiation. The IBL layout is shown in
figure 1. There are 14 staves in a turbine structure; each stave has 12 modules with double-chip
planar sensors in the center and 4 forward single-chip 3D sensors at the two extremities.
As of today the IBL detector is completed, installed in ATLAS under commissioning and ready for
the next year restarting of LHC.

2. Sensor design, production and results

The 3D silicon sensors used in the IBL have been produced by two silicon foundries [6, 7, 8]:
CNM1 and FBK2, on 230 µm thick 4-inch FZ3 p-type wafers having a resistivity of 10�30 kWcm.
A wafer floorplan and sensor geometry for FE-I4 [5] pixel front-end chip was defined in com-
mon with the different sensor producers participating in the prototype program coordinated by the
ATLAS 3D Collaboration. A total of 8 FE-I4 single-chip sensors fits in a wafer layout. In addi-
tion to the two already mentioned foundries also SINTEF4 and SNF5 participated in the prototype
program.

1Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193, Spain
2Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento, Italy
3Silicon crystal growth methods: FZ – float zone; CZ – Czochralski
4SINTEF MiNaLab, Blindern, N-0314 Oslo, Norway
5Stanford Nanofabrication Facility, Stanford, CA, United States

– 2 –
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Infrastructure upgrades: magnet & cryogenic systems, additional muon chamber 
shielding, new beam pipes

Detector consolidation: muon chamber completion (1.0 < |η | < 1.3) & replacements, 
calorimeter electronics repairs, improved inner detector read-out capability to cope 
with 100 kHz L1 trigger rate, new pixel detector services and module repairs

ATLAS improvements for Run-2
Huge consolidation & improvement programme for detector, online, offline, computing
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•  Almost 30 chambers needed 
to be replaced because of 
failures 

•  A production of chambers 
was started in 2012 and we 
had a slot for installation at 
the end of 2014 
•  Last interventions before closing 

the detector 

•  Acrobatic operations 

B. Di Girolamo - 13th Pisa Meeting on 
Advanced Detectors - 24-30 May 2015 17 New topological L1 trigger and 

new central trigger processor, 
restructured high-level trigger

New Insertable B-layer : fourth pixel 
layer at 3.3 cm from beam, consisting of 
planar & 3D (forward) silicon sensors, 
smaller pixels

New software, new production 
system, new analysis model, …

Also new beam 
pipe: r = 2.5 cm

Replacement of TGC chambers 
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CMS improvements for Run-2
Also significant updates and improvementsCMS detector for Run2

7

DAQ and HLT:  
New computers 
Improved Trigger 

new Beam Pipe 

4th muon station

HCAL new photosensors

new Luminosity 
telescopes

Tracker / Pixel: 
Cold Operation

August 31    2015                                         Paolo SPAGNOLO - INFN Pisa                                                     LHCP 2015                                                                                                             

Improvements during 
Long Shut Down LS1 

Source: Paolo Spagnolo, LHCP 2015

Also: – Multithreaded and more efficient reconstruction at CERN and Tier-1
– New compact mini-AOD format (~10% of AOD)
– Large efforts on improved (out-of-time) pileup mitigation

72 (144) new CSC 
(RPC) chambers 
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Detector consolidation: muon HV and grounding, 15% PMTs replace in HCAL, ECAL monitoring fibres 
replaced, module repairs in OT, HPD exchange in RICH, fixes in cooling, gas, power, shielding, …

LHCb improvements for Run-2
Big effort in trigger area (among others)

HeRSCheL: new scintillating counters to extend LHCb 
coverage to high rapidity (CEP, diffraction, …)

Trigger upgrade — split trigger:

– All 1st stage (HLT1) output stored on disk 

– Used for real-time calibration and alignment 

– 2nd stage (HLT2) uses offline-quality calibration 

– 5 kHz of 12 kHz to Turbo stream: 
• Objects produced by trigger are stored 
• No raw event → smaller event size
• Used for high-yield channels (charm, J/ψ, ...) 

LHCb trigger

Significant changes introduced this year in the LHCb trigger:

2011 and early 2012: increased trigger
bandwidth (compared to design 2 kHz) to
accommodate charm

2012: deferred trigger configuration: keep the
trigger farm busy between fills

2015: split trigger
All 1st stage (HLT1) output stored on disk
Used for real-time calibration and alignment
2nd stage (HLT2) uses o✏ine-quality
calibration
5 kHz of 12 kHz to Turbo stream:

Candidates produced by trigger are stored
No raw event ) smaller event size
Used for high-yield channels (charm, J/ ,
. . .)

Anton Poluektov LHCb highlights LHCP 2015, St. Petersburg, Russia, 31 August – 4 September 2015 5/20



Run-2 Physics & Performance



Preparation for Physics Results

A crucial ingredient for any physics result is a good understanding of the basic physics 
objects (tracks, e, µ, 𝜏, jets, missing transverse momentum, flavour tagging)

For early 13 TeV physics results, ATLAS developed concept of pre-recommendations
with Run-1 & MC based object calibrations and enlarged uncertainties fully available 
for early physics (summer conferences → results presented here)

Pre-recommendations promptly validated with first data, and then during the year 
replaced with fully 13 TeV data-driven recommendations (ie, calibration & uncertainties)

Early & validated MC crucial. Key role of ATLAS Physics Modelling Group



Soft physics with tracks at 13 TeV

One of the very first proton–
proton collisions recorded 
by ATLAS in “quiet beam” 
conditions in May 2015



ATLAS inner tracking performance 

ATLAS tracking in Run-2 features the new IBL, reduced material within acceptance, 
and algorithmic improvements (eg, huge speed-up, tracking in dense environment [ ATL-PHYS-PUB-2015-006 ] )

Sketch of ATLAS inner tracking detectors

[ ATL-PHYS-PUB-2015-018 ] 
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Measurement of primary charged particle production: dNch/dη, d 2Nch/dηdpT, Nch, <pT>/Nch

Fiducial cuts: pT > 0.5 GeV, |η | < 2.5, Nch ≥ 1 

• Trigger events with as little “bias” as possible: ≥1 hit in forward scintillators (MBTS, 2.07 < |η| < 3.86)

• Measure trigger and vertexing efficiencies from data
• Measure and subtract secondary interactions and fake tracks                                                                       
• Correct for tracking inefficiency 
• Unfold measured spectra from detector effects

Properties of inelastic pp collisions at 13 TeV 
Key input to pileup and underlying event modelling, uses low-µ data 
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[ ATLAS-CONF-2015-028 ] 
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Measurement of primary charged particle production: dNch/dη, d 2Nch/dηdpT, Nch, <pT>/Nch

Fiducial cuts: pT > 0.5 GeV, |η | < 2.5, Nch ≥ 1 

• Trigger events with as little “bias” as possible
• Measure trigger and vertexing efficiencies from data
• Measure and subtract secondary interactions and fake tracks                                                                       
• Correct for tracking inefficiency 
• Unfold measured spectra from detector effects

Properties of inelastic pp collisions at 13 TeV 
Key input to pileup and underlying event modelling, uses low-µ data 

Tracking efficiency dominant uncertainty: 1.1% central, 6.5% forward

• Primary particles have τ> 300 ps (9 cm)
• Secondaries are produced after τ> 30 ps (9 mm) 
• Strange baryons with 30 < τ < 300 ps are excluded

Secondaries after fit: 
2.6 ± 0.6% of tracks in SR

[ ATLAS-CONF-2015-028 ] 
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Properties of inelastic pp collisions at 13 TeV 
Key input to pileup and underlying event modelling, uses low-µ data  

Resulting spectra from 9M data events & comparison to hadronic physics models

Difficult to provide one universal tune that describe MB and UE data equally well (→ later slide)

Overall, the EPOS and PYTHIA 8 tunes describe the data most accurately                                
EPOS best in η, pT, and <pT>, while PYTHIA 8 (A2 – ATLAS MB default) best in Nch
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CMS measurement without magnetic field
First LHC 13 TeV paper !

Charged particle yield measurement for |η | < 2
Straight track (pixel, 55k events) and tracklet (pixel hit pairs, 170k) methods, good agreement
• pT coveage down to ~50 MeV, track efficiency between 80–85%
• Secondary particle corrections, and track / tracklet acceptance & reconstruction efficiencies from MC
• Systematic uncertainties of 3–4% for both methods, dominated by vertex efficiency and MC dependence

[ CMS PLB 751, 143 (2015) ] 
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Also preliminary ALICE result 
First 13 TeV result by ALICE

Charged particle yield measurement for |η | < 2
Distinguish samples in inelastic (INEL) and inelastic + ≥1 track within |η | < 1 (INEL > 0) 
• Measure: dnch/dη |η| < 0.5 = 5.36 ± 0.13 in agreement with CMS

[ CMS PLB 751, 143 (2015), ALICE-PUBLIC-2015-005 ] 

Charged-particle pseudorapidity density in pp at
p
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Fig. 2: Presudorapidity distribution of charged particles produced in pp collisions at
p

s = 13 TeV. The ALICE
results are shown in the normalisation classes INEL and INEL>0 and compared with Monte Carlo calculations
and results from the CMS Collaboration. The uncertanties are the quadratic sum of statistical and systematic
contributions.

2013 for INEL and INEL>0 events, respectively, and have been assigned as asymmetric uncertanties.
The uncertainty in detector acceptance and efficiency is estimated to be about 1.5%, determined from the
change of the multiplicity at a given h by varying the range of the z position of the vertex and performing
the measurement in different runs. The material budget in the ALICE central barrel |h | < 1 is known
with a precision of about 5% [14]. The corresponding systematic uncertainty, obtained by varying the
material budget in the simulation, is estimated to be about 0.1% and is negligibly small compared to
the other sources. The sensitivity to tracklet selection criteria was estimated to contribute a neglibile
uncertainty by varying the selection requirements. The uncertainty due to the particle composition is
estimated to be about 0.2% and was determined by changing the relative fractions of charged kaons and
protons with respect to charged pions by ±30% with respect to the fractions produced by the Monte
Carlo generator. The uncertainty resulting from the subtraction of the contamination from weak decays
of strange particles is reduced by the correction that takes into account for the differences in strange
particle production between data and Monte Carlo and amounts to about 0.2%. The uncertainty due
to the correction down to zero transverse momentum (pT) is estimated to be about 1% by varying by
+100
�50 % the amount of particles below the 50 MeV/c low-pT cutoff. Finally, an uncertainty of 1% has been
estimated by varying the offline event-selection criteria and only affects the normalisation of the INEL
sample. In total, a systematic uncertainty of about 2.5% and +2.8

�2.2 % was obtained for INEL and INEL>0,
respectively, by adding in quadrature all the contributions.
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Charged particle production versus CM energy

Average charged-particle multiplicity per unit of rapidity for η = 0 vs √s

 [GeV]s

310 410

 =
 0

 
η  

η
 / 

d
ch

N
 d⋅ 

ev
N

1/

1

1.5

2

2.5

3

3.5

4
 1≥ chn > 500 MeV, 

T
p

PreliminaryATLAS 
Data
PYTHIA8 A2
PYTHIA8 Monash
HERWIG++ UE-EE5
EPOS LHC
QGSJET II-04

For comparison, the strange baryon contribution is 
included at 13 TeV in ATLAS (1.5% correction factor)

 0

 1

 2

 3

 4

 5

 6

 7

 8

101 102 103 104

d
N

ch
/d

η
| |η

| 
<

 0
.5

�√s [GeV]

pp inelastic

parabolic fit in ln(s)

CMS

CMS
ALICE
PHOBOS
UA5
ISR
PYTHIA8 CUETP8S1
EPOS LHC

[CMS PLB 751, 143 (2015) , ATLAS-CONF-2015-028 ] 

Fair agreement with model extrapolations
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Measurement in fiducial region ξ = MX2 / s > 10–6 (MX largest mass of two proton-dissociation systems)

• Use Minimum Bias Trigger Scintillators (MBTS) with acceptance 2.07 < |η | < 3.86, 4.2M selected events 
• Use inclusive and single sided MBTS selections to constrain fraction of diffractive events in sample
• Systematic uncertainty fully dominated by luminosity

Inclusive inelastic cross-section measurement at 13 TeV
Fundamental initial measurement, based on forward scintillators

[ ATLAS-CONF-2015-038 ] 
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Fiducial cross-section compared to model predictions Extrapolated inelastic cross-section versus CM energy
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Near-side (Δφ ~ 0) “ridge” shape along Δη seen in pp, pPb and  PbPb collisions
First observed in pp by CMS: effect increases with particle multiplicity and moderate pT

Long-range two-charged-particle angular correlations
In high-multiplicity pp collisions using low-µ data
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[ Enhancement found to be also present at Δφ ~ π, 
when subtracting hard scattering contributions ]
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CMS, pp at 7 TeV: 
Nch > 110, 1.0 < pT < 3.0 GeV

ATLAS, pPb at 5.02 TeV: 
Nch > 220, 1.0 < pT < 3.0 GeV

ATLAS, PbPb at 2.76 TeV: 
Centrality 0–5%



φ∆
0 2 4

)φ
∆

C
(

0.95

1

1.05

ATLAS
=13 TeVs

<20 rec
 chN≤0

<5.0 GeVa,b
T

0.5<p

|<5.0η∆2.0<|

41

Two-charged-particle angular correlations at 13 TeV
In high-multiplicity pp collisions using low-µ data
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Integrate:
2 < |Δη | < 5 

How does the pp ridge evolve with CM energy ?
• ATLAS: trigger on MBTS (97M events) & high charged multiplicity (9.5M) 
• Exploit work on tracking corrections from minimum bias analysis
• Extract two-particle correlation function (background from mixed events) →

• Determine “ridge yield”                                            
N

o
t

r
e
v

i
e
w

e
d

,
f
o

r
i
n

t
e
r
n

a
l

c
i
r
c
u

l
a

t
i
o

n
o

n
l
y

DRAFT

between 0.3 and 0.6 GeV, and varies only weakly for pT > 0.6 GeV, where it ranges from 88-90% at ⌘ = 0 to97

77-80% at |⌘ | = 1.5 and 68-73% at |⌘ | > 2.0. The e�ciency is also found to vary by less than 1% over the98

multiplicity range used in the analysis. The total systematic uncertainty on the tracking e�ciency is less99

than 2.5% in the pT and ⌘ range used in the analysis [43]. In the simulated events, the tracking e�ciency100

reduces the measured charged-particle multiplicity relative to the P����� 8 particle-level multiplicity for101

pT > 0.4 GeV by an approximately multiplicity-independent factor of 1.18.102

4 Two-particle correlation analysis103

ATLAS has previously published measurements of the two-particle correlations as a function of relative104

azimuthal angle�� = �a��b and relative pseudorapidity�⌘ = ⌘a�⌘b in Pb+Pb and p+Pb collisions [44–105

46]. This analysis follows a very similar approach. For a given event class, the two-particle correlations106

are measured as a function of �� and �⌘, with |�⌘ |  �⌘max = 5, determined by the acceptance of107

the ID. The labels a and b denote the two particles in the pair, which may be selected from di�erent pT108

intervals. The particles a and b are conventionally referred to as the “trigger” and “associated” particles,109

respectively. The correlation function is defined as:110

C(�⌘,��) =
S(��,�⌘)
B(��,�⌘)

, (1)

where S and B represent pair distributions constructed from the same event and from “mixed events” [32],111

respectively. S is constructed using all pairs that can be formed in each event from tracks that have passed112

the selections described above. The mixed-event function, B(��,�⌘), which measures the distribution113

of uncorrelated particles, is similarly constructed by choosing the two particles in the pair from di�erent114

events. The two events are required to have similar N

rec
ch (|�N

rec
ch | < 10) and similar zvtx (|�zvtx | < 10 mm)115

so that variations in S(��,�⌘) due to detector e�ects are properly reflected in and compensated by116
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Two-charged-particle angular correlations at 13 TeV
In high-multiplicity pp collisions using low-µ data
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How does the pp ridge evolve with CM energy ?
• ATLAS: trigger on MBTS (97M events) & high charged multiplicity (9.5M) 
• Exploit work on tracking corrections from minimum bias analysis
• Extract two-particle correlation function (background from mixed events) →

• Determine “ridge yield”                                            
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between 0.3 and 0.6 GeV, and varies only weakly for pT > 0.6 GeV, where it ranges from 88-90% at ⌘ = 0 to97

77-80% at |⌘ | = 1.5 and 68-73% at |⌘ | > 2.0. The e�ciency is also found to vary by less than 1% over the98

multiplicity range used in the analysis. The total systematic uncertainty on the tracking e�ciency is less99

than 2.5% in the pT and ⌘ range used in the analysis [43]. In the simulated events, the tracking e�ciency100

reduces the measured charged-particle multiplicity relative to the P����� 8 particle-level multiplicity for101

pT > 0.4 GeV by an approximately multiplicity-independent factor of 1.18.102

4 Two-particle correlation analysis103

ATLAS has previously published measurements of the two-particle correlations as a function of relative104

azimuthal angle�� = �a��b and relative pseudorapidity�⌘ = ⌘a�⌘b in Pb+Pb and p+Pb collisions [44–105

46]. This analysis follows a very similar approach. For a given event class, the two-particle correlations106

are measured as a function of �� and �⌘, with |�⌘ |  �⌘max = 5, determined by the acceptance of107

the ID. The labels a and b denote the two particles in the pair, which may be selected from di�erent pT108

intervals. The particles a and b are conventionally referred to as the “trigger” and “associated” particles,109

respectively. The correlation function is defined as:110

C(�⌘,��) =
S(��,�⌘)
B(��,�⌘)

, (1)

where S and B represent pair distributions constructed from the same event and from “mixed events” [32],111

respectively. S is constructed using all pairs that can be formed in each event from tracks that have passed112

the selections described above. The mixed-event function, B(��,�⌘), which measures the distribution113

of uncorrelated particles, is similarly constructed by choosing the two particles in the pair from di�erent114

events. The two events are required to have similar N

rec
ch (|�N

rec
ch | < 10) and similar zvtx (|�zvtx | < 10 mm)115

so that variations in S(��,�⌘) due to detector e�ects are properly reflected in and compensated by116

corresponding variations in B(��,�⌘). For this measurement, each event is mixed with ten other events117
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Two-charged-particle angular correlations at 13 TeV
In high-multiplicity pp collisions using low-µ data
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How does the pp ridge evolve with CM energy ?
• ATLAS: trigger on MBTS (97M events) & high charged multiplicity (9.5M) 
• Exploit work on tracking corrections from minimum bias analysis
• Extract two-particle correlation function (background from mixed events) →
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between 0.3 and 0.6 GeV, and varies only weakly for pT > 0.6 GeV, where it ranges from 88-90% at ⌘ = 0 to97

77-80% at |⌘ | = 1.5 and 68-73% at |⌘ | > 2.0. The e�ciency is also found to vary by less than 1% over the98

multiplicity range used in the analysis. The total systematic uncertainty on the tracking e�ciency is less99

than 2.5% in the pT and ⌘ range used in the analysis [43]. In the simulated events, the tracking e�ciency100
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pT > 0.4 GeV by an approximately multiplicity-independent factor of 1.18.102
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, (1)

where S and B represent pair distributions constructed from the same event and from “mixed events” [32],111

respectively. S is constructed using all pairs that can be formed in each event from tracks that have passed112

the selections described above. The mixed-event function, B(��,�⌘), which measures the distribution113

of uncorrelated particles, is similarly constructed by choosing the two particles in the pair from di�erent114

events. The two events are required to have similar N
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Two-charged-particle angular correlations at 13 TeV
In high-multiplicity pp collisions using low-µ data

Resulting yield dependence (CMS)
• Left: versus pT and Ntrk and compared between CM energies for 2 < |Δη | < 4
• Right: versus Ntrk and compared between processes for 2 < |Δη | < 4 and 1 < pT < 2 GeV 
• No visible CM energy dependence of yield for pp colisions (also found by ATLAS)
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No apparent dependence on CM energy, 
but on size of colliding system
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Two-charged-particle angular correlations at 13 TeV
In high-multiplicity pp collisions using low-µ data

ATLAS replaced ZYAM method by template fit 
and measured ridge at 13 TeV and 2.76 TeV
• Ridge modulation in Y (Δφ) yield fitted by:
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Figure 3: Per-trigger-particle yields, Y(��), for 0.5<p

a,b
T <5.0 GeV in di↵erent N

rec
ch intervals in 2.76 and 13 TeV

data. Panel (a): 0N

rec
ch <20 for both data sets. Panels (c) and (e): 50–60 and 70–80 N

rec
ch intervals for 2.76 TeV data.

Panels (b), (d) and (f): 40–50, 60–70, and �90 N

rec
ch intervals for 13 TeV data. In panels (b)–(f), the open points and

curves show di↵erent components of the template (see legend) that are shifted, where necessary, for presentation.

Y(��) distribution, scaled up by a multiplicative factor and a constant modulated by cos(2��). The
resulting template fit function,

Y

templ(��) = F Y

periph(��) + Y

ridge(��) , (3)

where
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ridge(��) = G
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�
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has two free parameters, F and v2,2. The coe�cient, G, which represents the magnitude of the combi-
natoric component of Y

ridge(��), is fixed by requiring that
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R ⇡

0 d�� Y . The peripheral
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Physics with photons and jets at 13 TeV

Early 13 TeV event recorded by 
CMS showing two high-energy 
particle jets with invariant mass 
of 5 TeV

Moving to higher luminosity and pT
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Photon production at 13 TeV
Test perturbative QCD in cleaner environment than jets

Measurement of isolated photon yield
Subtract mis-identification background from data using isolation distribution

Photon production vs. ET,γ and |ηγ | (detector level, MC normalised to data)

Systematics dominated 
by photon energy 
scale, resolution and 
efficiency

Good agreement of 
shape with SHERPA 2.1 
(LO + ≤3 partons)
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Fig. 20: Feynman diagrams of LO γ-jet reducible background in Pythia : ISUB 14, 29, 115.
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Fig. 21: Feynman diagrams of LO jet-jet reducible background in Pythia : ISUB 11, 12, 13, 28, 53, 68.

quark-initiated jet in the final state, while most of the jets produced in the jet-jet events are gluon-initiated
jets.

At LO, the normalisation of the γ-jet and jet-jet backgrounds is given by the Pythia cross-sections.
At NLO, a K factor of 1.7 has been applied by hand [40]. This approximation is anyway much smaller
than the uncertainty on the reducible background.
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quark-initiated jet in the final state, while most of the jets produced in the jet-jet events are gluon-initiated
jets.

At LO, the normalisation of the γ-jet and jet-jet backgrounds is given by the Pythia cross-sections.
At NLO, a K factor of 1.7 has been applied by hand [40]. This approximation is anyway much smaller
than the uncertainty on the reducible background.

22

Barrel–endcap 
transition region 

excluded

Systematic uncertainties dominated by: photon energy scale, photon ID, background subtraction

[ ATL-PHYS-PUB-2015-016 ]
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Jet production at 13 TeV
Early central-jet cross-section measurement at 13 TeV

Measurement performed within fiducial region 350 < pT < 840 GeV and |yjet| < 0.5: 
• Single jet trigger, fully efficient above 300 GeV jet pT

• Reconstruct anti-kt R= 0.4 jets, calibrated using MC and Run-1 data, validated in Run-2 data
• Unfold to particle level
• Dominant systematic uncertainty: jet energy scale and resolution

Compare with NLO theory (incl. PS+UE corrections) of measured diff. cross sections vs. pT

[ ATLAS-CONF-2015-034 ]
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New physics searches with dijets
Early 13 TeV data already sensitive to very high-mass & cross section physics (eg, QBH)

Analysis strategy (dijet resonance):

• Look for deviation in dijet invariant mass spectrum from smooth function
• Alternative functions / more parameters used following predefined rule (independent of data outcome)

[ ATLAS-CONF-2015-034, CMS-PAS-EXO-15-001 ]
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New physics searches with dijets
Early 13 TeV data already sensitive to very high-mass & cross section physics (eg, QBH)

Analysis strategy (dijet resonance):

• Look for deviation in dijet invariant mass spectrum from smooth function
• Alternative functions / more parameters used following predefined rule (independent of data outcome)

[ ATLAS-CONF-2015-034, CMS 1512.01224 ]
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Analysis strategy (dijet angular):

• Search for non-resonant high-mass 
anomalies using angular distribution

• Define for jets 1 & 2:

χ = exp |y1 – y2 |

which is ~independent of m12 for
t-channel LO QCD at parton level

Restrict analysis to |y1 + y2| < 2.2,                   
and to m12 > 2.5 TeV

• Prediction from NLOJET++ and 
including electroweak effects

• Systematic uncertainty dominated by 
QCD prediction and jet energy scale

[ ATLAS-CONF-2015-034 ]

New physics searches with dijets
Early 13 TeV data already sensitive to very high-mass & cross section physics (eg, QBH)
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8.8 TeV mass dijet event collected by ATLAS in September 2015 
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New physics searches with multiple jets
Similar analysis to dijets, but looking for deviation in inclusive jet production

Analysis strategy:

• Search for deviation in HT = Σjets pT in events with at ≥ 3–8 jets with pT > 50 GeV

• High-HT trigger ~fully efficient above 1 TeV

CR

VR

SR

• Data driven background fit as in dijet
case, but more tricky as fit over full 
spectrum could “eat” signal

• Define control (CR), validation (VR), 
signal regions (SR) depending on low, 
medium, high HT

• On lower luminosity bootstrap sample fit 
data in CR, use VR to validate functional 
form

• Use function to fit full spectrum and 
derive background prediction in SR

• Vary functions to assess extrapolation 
uncertainty

[ ATLAS-CONF-2015-043 ]
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New physics searches with multiple jets
Similar analysis to dijets, but looking for deviation in inclusive jet production

Sensitivity to TeV-scale gravity models beyond that of Run-1 

Limit increased over Run-1 by more than 
2 TeV in threshold mass for MD < 4 TeV
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New physics searches with lepton & jets
Similar analysis to dijets, but looking for deviation in inclusive jet production

Analysis strategy:

• Search for non-resonance deviation in Σe/µ+jets pT in events with at least 3 high-pT objects (≥ 1 lepton)

• Single lepton trigger, 2 signal regions with Σe/µ+jets > 60 GeV pT > 2 (3) TeV

• Dominant backgrounds (W/Z+jets, ttbar) from MC normalised to data in control regions, others from MC 

• Propagation 
of exp. and 
theoretical 
uncertainties

• Validation 
region for 
1.5 < Σ pT < 
2 TeV

[ ATLAS-CONF-2015-046 ]
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Physics with leptons at 13 TeV

Dimuon mass distribution collected 
with various dimuon triggers 
[ CMS DP-2015/015 ]



J/Ψ production at 13 TeV
Good environment in early data with low trigger thresholds

J/Ψ are produced promptly and via weak decays of b-hadrons
LHCb used initial 3 pb–1 for first prompt & non-prompt J/Ψ cross-section measurement in forward rapidity
Systematic uncertainty mostly dominated by luminosity (3.9%)

[ LHCb 1509.00771 ]
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Analysis performed almost promptly thanks to the “Turbo stream” trigger line



J/Ψ production at 13 TeV
Good environment in early data with low trigger thresholds

J/Ψ are produced promptly and via weak decays of b-hadrons
LHCb used initial 3 pb–1 for first prompt & non-prompt J/Ψ cross-section measurement in forward rapidity
Differential absolute cross-sections and ratios to 8 TeV obtained, show total fiducial cross-sections here

[ LHCb 1509.00771 ]
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Cross-sections rise mostly due to CM energy; harder pT spectrum at 13 TeV than at 8 TeV
Total σ(pp → bb+X ) = 515 ± 2 ± 53 μb (using BR(b → J/ψ X ) = 1.16 ± 0.10%). 



J/Ψ production at 13 TeV
Good environment in early data with low trigger thresholds

ATLAS measured the J/Ψ non-promdpt fraction at 13 TeV in early 6.4 pb–1 dataset 
Cuts: pT,µ > 4 GeV, |ηµ| < 2.3, pT,µµ > 8 GeV, |yµµ | < 2, 2D fit to mµµ and proper decay time τ = Lxy mJ/Ψ / pT,µµ

[ ATLAS-CONF-2015-030 ]

59

Non-prompt contribution to total rate rises rise from approximately 25% at pT,µµ of 8 GeV to 65% at 40 GeV 
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Prompt charm production at 13 TeV
Second LHCb paper on 13 TeV

Measurements of prompt D 0, D +, Ds+, D*+ forward cross-sections with 5 pb–1

Measure differentially in bins of meson pT and rapidity, and integrated fiducial cross-sections 
Total charm (cc) cross-sections by correcting for cc → D fragmentation fractions measured at B-factories

[ LHCb 1510.01707 ]
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Averaged integrated cross-section: σ(pp → cc+X ) = 2940 ± 3 (stat) ± 180 (syst) ± 160 (frag) µb
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W and Z boson production at 13 TeV

Displays of one Z(→ µµ) + jets candidate event
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Z and W production at 13 TeV (ATLAS)
Expect increase of cross section by factors of 1.7 and 1.6, respectively

Leptonic decays are important standard candles to verify and calibrate e/µ performance

Following plots are normalised to NNLO QCD and to luminosity. Error bands in plots do not include 9% 
luminosity uncertainty (leading uncertainty, other systematics dominated by lepton ID)

[ ATLAS-CONF-2015-039 ]
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Z and W production at 13 TeV (ATLAS)
Expect increase of cross section by factors of 1.7 and 1.6, respectively

Leptonic decays are important standard candles to verify and calibrate e/µ performance

Following plots are normalised to NNLO QCD and to luminosity. Error bands in plots do not include 9% 
luminosity uncertainty (leading uncertainty, other systematics dominated by lepton ID)
Muon efficiency scale factors (both trigger and offline) from data tag & probe 
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Z and W production at 13 TeV (CMS — new!)
Expect increase of cross section by factors of 1.7 and 1.6, respectively

W and Z inclusive cross section measurements

[ CMS-PAS-SMP-15-004 ]

For Z: count events in m(Z) region. Measurement benefits from a reduced luminosity uncertainty of 4.8%! 
Leading systematic uncertainty from lepton identification (~2%)
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Z and W production at 13 TeV (CMS — new!)
Expect increase of cross section by factors of 1.7 and 1.6, respectively

W and Z inclusive cross section measurements

[ CMS-PAS-SMP-15-004 ]

For W: fit of ET,miss spectrum. Measurement benefits from a reduced luminosity uncertainty of 4.8%! 
Leading systematic uncertainty from lepton identification (~2%)
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Z and W production at 13 TeV
Expect increase of cross section by factors of 1.7 and 1.6, respectively

Resulting inclusive cross sections

Comparison of measured cross-sections with 
NNLO QCD & NLO EW predictions (FEWZ 3.1)

Good agreement found within uncertainties,       
also with lepton universality

Measured also fiducial cross sections

[ ATLAS-CONF-2015-039, CMS-PAS-SMP-15-004 ]
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Cross-section ratios quite precise (< 3%)
Powerful tools to constrain PDFs: W+ / W– sensitive to low-x u & d valence, W / Z constrains s
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ATLAS also looked into production of Z associated with jets
Benchmark process to understanding QCD and EW physics at 13 TeV

Measurement in its own right and validation of important background to new physics searches 

Good description by SHERPA 2.1.1 (ME+PS@NLO prescription, up to 2 partons at NLO, up to 4 partons at LO ME) 
and Madgraph (LO)

[ ATLAS-CONF-2015-041 ]
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High-mass dilepton production
Insufficient luminosity yet to challenge Run-1 sensitivity to new physics

Drell-Yan production at high q 2

Dominant irreducible backgrounds taken from MC simulation, DY normalised to Z peak

pp → µµ + X

[ ATLAS EXOT-2015-001, 
EXOT-2015-004 ]
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Display of µ+µ– event with 881 GeV invariant mass



30August 31    2015                                         Paolo SPAGNOLO - INFN Pisa                                                     LHCP 2015                                                                                                             

M =  2.9 TeV !!!
• Display of rare colossal e+e– candidate 

event with 2.9 TeV invariant mass
• Each electron candidate has 1.3 TeV ET

• Back-to-back in φ
Highest-mass Run-1 events: 1.8 TeV (ee), 1.9 TeV (µµ)

31August 31    2015                                         Paolo SPAGNOLO - INFN Pisa                                                     LHCP 2015                                                                                                             

In the additional 25 pb-1 data @13 TeV and 50 ns processed last Wednesday:

An event with a di-electron mass of 2.9 TeV has been observed

The event consists in two perfectly balanced electrons and no other significant activity

M =  2.9 TeV !!!

Di-electron resonance search 



Top quark production at 13 TeV

Boosted hadronic ttbar event 
measured by CMS
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Top-antitop production at 13 TeV
Expect increase of 8 TeV cross section by a factor of 3.3

Cleanest channel: tt → (e + ν + b-jet) + (µ + ν + b-jet) = eµ + 2 b-jets + ET,miss

Select: OS electrons & muons with pT > 25 GeV, at least one b-tagged jet with pT > 25 GeV    
(clean channel, no ET,miss requirement needed → reduce systematics)
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Shape comparison only. MC normalised to data

[ ATLAS-CONF-2015-033, ATLAS-CONF-2015-049 ]
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Top-antitop production at 13 TeV
Extraction of top-pair cross section

Apply robust data-driven method that provided most precise Run-1 measurements (7, 8 TeV)

Following relation allows to simultaneously 
determine σtt and εb from data

N1(2) – number of selected events with 1(2) b-tags
N1(2)

bkg – number of background events with 1(2) b-tags
L – luminosity of data sample
εeµ – (tt →) eµ selection eff& acc (~0.9%) incl. BR 
εb – probability to b-tag q from t → Wq
Cb = εbb /εb is non-factorisation correction 

(1.005 ± 0.006 from MC)
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Observe: N1 = 319, N2 = 167
Expect: N1

bkg = 37.3 ± 5.5, N2
bkg = 8.5 ± 3.5, 

dominated by Wt (MC, approx. NNLO), then mis-id. e/µ (MC & data)

MC normalised to SM expectation

N1 = L ⋅σ tt ⋅εeµ ⋅2εb ⋅ 1−Cbεb( )+N1bkg

N2 = L ⋅σ tt ⋅εeµ ⋅Cbεb
2 +N2

bkg

[ ATLAS-CONF-2015-033, ATLAS-CONF-2015-049 ]
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Top-antitop production at 13 TeV
Extraction of top-pair cross section

Solving the equation gives the following 13 TeV pp → tt + X cross section

Systematic uncertainty (7.3%) dominated by 

- tt hadronisation (4.5%) → large Pythia8 / Herwig++ parton shower effect, to be further studied

- tt NLO modelling, ISR/FSR radiation & PDF (2.8%) 
- Electron ID + isolation (3.4%)
- Muon ID + isolation (1.2%)
- Lepton mis-identification (1.4%)
- Lepton triggers (0.8%)

Overall uncertainty dominated by luminosity (9%)  → will improve with full van-der-Meer luminosity scan

σtt[SM] (13 TeV) = 832       pb ( at NNLO + NNLL accuracy, mt = 172.5 GeV, Top++ 2.0 )  

Total relative 
uncertainty of 14%
(4.3% at 8 TeV)

+40
–46

We also measure: εb = 0.527 ± 0.026 ± 0.006, in good agreement with simulation: 0.543 

→ will improve with more data

σtt (13 TeV) = 829 ± 50 (stat) ± 56 (syst) ± 83 (lumi) pb 

[ ATLAS-CONF-2015-033, ATLAS-CONF-2015-049 ]
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Top-antitop production at 13 TeV
Extraction of top-pair cross section

Solving the equation gives the following 13 TeV pp → tt + X cross section

[ ATLAS-CONF-2015-033, ATLAS-CONF-2015-049 ]
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Top-antitop production at 13 TeV
Extraction of top-pair cross section

R (tt / Z) = 0.445 ± 0.027 (stat) ± 0.028 (syst) [9%]

Ratio to Z cross section reduces systematic uncertainty

[ ATLAS-CONF-2015-049 ]
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Total and differential cross-section measurements
Test 13 TeV modelling (verify known problems during Run-1)

Total cross-section measurement in dilepton e–µ channel
Select: OS electrons & muons with pT > 20 GeV, ≥ 2 jets with pT > 30 GeV, |ηe, µ, jets| < 2.4, no b-tagging 
(alternative analysis uses 0,1,2 b-tagging categories)

Trigger and lepton efficiencies largest systemtics after luminosity 

[ CMS 1510.05302, CMS PAS TOP-15-010 ]

Total relative 
uncertainty of 16%σtt (13 TeV) = 769 ± 60 (stat) ± 55 (syst) ± 92 (lumi) pb 
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Total and differential cross-section measurements
Test 13 TeV modelling (verify known problems during Run-1)

Total and differential cross-section 
measurements in lepton+jets channel
Select: 1 electron or muon with pT > 30 GeV, 
|ηe, µ| < 2.1, ≥ 4 jets with pT > 25 GeV, 
|ηjets| < 2.4, ≥ 1 b-tag

Dominant systematics: luminosity, b-tagging, 
JES/JER, PDF, PS

Also total inclusive cross-section measurement

[ CMS-PAS-TOP-15-005 ]
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Total and differential cross-section measurements
Test 13 TeV modelling (verify known problems during Run-1)

Additional recent differential cross-section measurements in lepton+jets channel
Larger luminosity of 71 pb–1, different variables

[ CMS-PAS-TOP-15-013 ]
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Display of t-channel single-top candidate event: muon with pT of 30 GeV, central b-tagged jet of 50 GeV, 
forward jet 30 GeV, ET,miss of 40 GeV
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Finally: t-channel single top production
Expect factor 2.5 larger cross-section at 13 TeV compared to 8 TeV

[ CMS-PAS-TOP-15-004 ]

2→2 and  2→3 single-top t-channel processes 
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Early measurement by CMS using 42 pb–1 of data in muon channel
Select: =1 isolated muon with pT > 22 GeV, |ηµ| < 2.1, jets > 40 GeV, |ηjet| < 4.7; t-channel enriched events 
have 2 jets, 1 b-tag and mµνb ~ mtop. Signal extracted from fit to |ηlight-jet| distribution in mµνb signal region,    
top backgrounds from 2 b-tag control region. Systematics: JES (17%), luminosity (12%), b-tagging (6%), …
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Finally: t-channel single top production
Expect factor 2.5 larger cross-section at 13 TeV compared to 8 TeV

[ CMS-PAS-TOP-15-004 ]
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σtt = 274 ± 98 (stat) ± 52 (syst) ± 33 (lumi) pb

σt-channel[SM] (13 TeV) = 217 (scale) ± 6 (PDF) pb (NLO)  

Early measurement by CMS using 42 pb–1 of data in muon channel
Select: =1 isolated muon with pT > 22 GeV, |ηµ| < 2.1, jets > 40 GeV, |ηjet| < 4.7; t-channel enriched events 
have 2 jets, 1 b-tag and mµνb ~ mtop. Signal extracted from fit to |ηlight-jet| distribution in mµνb signal region,    
top backgrounds from 2 b-tag control region. Systematics: JES (17%), luminosity (12%), b-tagging (6%), …

+7
–6

3.5σ (2.7σ) observed (expected) significance



CONCLUSIONS

Successful restart by LHC and detectors after LS1
Experiments were well prepared — lots of interesting physics results already 

Much more to come

We are here

Next updates: watch the archive and the end-of-year seminars, 15 Dec 2015                          
[ http://indico.cern.ch/event/442432 ]
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Display of ZZ → µ+µ– + e+e– candidate event (mµµ / ee = 94 / 86 GeV, mµµee = 191 GeV) 



Display of H → 2µ2e candidate from 13 TeV pp collisions. The measured momenta are: pT(µ) = 55, 33 GeV, 
pT(e) = 14, 11 GeV The measured masses are: m(2µ2e) = 123 GeV, m(µµ) = 91 GeV, m(ee) = 27 GeV. 


