# Studying muonic atoms with Miniball at PSI 01st December 2015

#### On behalf of the muX collaboration

A. Antognini, K. Kirch, A. Knecht, E. Rapisarda, *Paul Scherrer Institut, Villigen and ETH Zürich, Switzerland*N. Berger, D. vom Bruch, F. Wauters, *University of Mainz, Germany*P. Indelicato, *LKB Paris, France*K. Jungmann, L. Willmann, *University of Groningen, The Netherlands*P. Kammel, *University of Washington, Seattle, USA*M. Pospelov, *University of Victoria and Perimeter Institute, Canada*N. Severijns, *KU Leuven, Belgium*

## Paul Scherrer Institute





- Ultra-cold neutron spallation source
- Swiss Muon Source

powered by a 590 MeV cyclotron which delivers 1.3 MW proton beam (HIPA)

Swiss Light Source – SLS

### **Overview HIPA facility**



### **Muon Production**



#### **Muonic Atoms**



Fig. 15.8 The probability densities of finding a muon in the state indicated, at a distance r from the nuclear centre (full lines), are compared with the nuclear charge distribution in the case of lead. In the  $S_{1/2}$  state, the probability of finding a muon within the nucleus is close to 50% (Devons and Duerdoth 1969).

### Muonic atoms: unique laboratory for precision measurements

- Precision tool to measure NUCLEAR
   CHARGE RADII and Deformation properties of nuclei
- Successfully used since more than 40 years to study STABLE isotopes (and few radioactive)
- Proton radius

```
Nature 466, 213 (2010),
Science 339, 417 (2013)
```

1. Measurement of the nuclear charge radius of muonic Ra

#### Expression of Interest (June 2015)

PARITY VIOLATION IN ATOMIC SYSTEMS





- Large ATOMIC PARITY VIOLATION enhancement four-orders of magnitude
- Proposed in the 80's
   J. H. Missimer and L. M. Simons, Phys. Rept 118 (1985) 179.
- Due to experimental limitations, early attempts were unsuccessful
  - 2. Measurement of Atomic Parity Violation effects in muonic atoms

### Parity Violation in atoms



• 25→1S in muonic atoms has never been observed

#### • SURPRISES from muons

- Proton radius
- Muon magnetic moment g-2
- B-decays at LHCb shows  $O(3\sigma)$  deviations especially in
- channels involving muons.
- Test parity violation in muonic systems

I=0 to I=0 Electric Dipole transition are forbidden by parity selection rules (QED)

#### Weak interaction violates parity:

 Atomic states acquire tiny admixture of opposite-parity states

$$\eta = \frac{\langle 2P|H_{PV}|2S\rangle}{\Delta E}$$

 $\circ$  A non-zero transition amplitude can be measured

◦ Experimental observable: Asymmetry of 2S→1S A ~ $\eta \frac{E1(2P \rightarrow 1S)}{M1(2S \rightarrow 1S)}$ 

 $\circ$  ~ m<sup>2</sup> → the effect in muonic atoms is enhanced 4-order of magnitude

#### **MUON-ELECTRON UNIVERSALITY ?**

### Populating the 2S state

Experimental challenges



#### **B.** Atomic radiative capture from continuum

- (i) Emission of one photon  $E_{\gamma} = E^{\mu}_{KE} + B.E.$
- (ii) 2S population ~  $10^{-6}$

#### Hunting the $2S \rightarrow 1S$ transition



#### Test Beam at PSI on 27-28 Nov. 2015

- (i)  $10^5 \,\mu^{-}/s$
- (ii) 30h of data
- (iii) Detection efficiency  $\sim 0.7\%$  and  $\sim 0.2\%$

#### With Miniball detectors in close geometry

- (i) Detailed level scheme of the muonic cascade
- (ii) Branching ratios and feedings
- (iii) Detection of the  $2S \rightarrow 1S$

EXPRESSION OF INTEREST observation of the  $2S \rightarrow 1S$  transition in Zn (Z=30)

It paves the way to Atomic Parity Violation in muonic atoms

### Atomic Parity Violation and the running of $sin^2\theta_W$

Atomic parity violation effects allow the extraction of the weak mixing angle, the Weinberg angle  $\theta_w$  at low Q that can be used to test the Standard Model running of the sin<sup>2</sup> $\theta_w$ 



(\*) no stable isotopes exist in Nature. Fundamental nuclear parameters, like the nuclear charge radius, are not known.



### Methods for nuclear charge radii

- APV in Ra: extraction of the Weinberg angle with 0.1% precision (compare to 0.35% in Cs) require knowledge of the charge radius of Ra with 0.2% uncertainty (0.01fm)
- 1. Elastic electron scattering gives the radial dependence of the nuclear Nuclear Ground State Charge Radii Charge distribution
- 2. Optical Spectroscopy measures difference of mean-square radii  $\delta \langle r^2 \rangle$
- 3. Muonic atoms sensitive to nuclear charge distribution

• Elastic electron scattering and muonic atoms provide absolute values to calibrate the laser-spectroscopy data

• Above Z=83  $\rightarrow$  laser spectroscopy: relative difference in mean-square radii along isotopic chain



### Radius of Pb



- Precise measurement of the energy levels (mainly 2P→1S)
- Extraction of the **n** and **c** parameters using a two-parameters Fermi distribution  $\rho(r) = \rho_0/\{1 + exp[\mathbf{n}((r - \mathbf{c})/\mathbf{c}]\}$



FINITE SIZE EFFECT 
$$\propto \left|\Psi(r=0)\right|^2 \propto m^3$$
 10<sup>7</sup>

Radii are are measured with precision as few parts per 10<sup>-4</sup> !

### Charge Radius of Radium - setup

Experimental approach as the one used for stable isotopes

#### 2. Measurement of the nuclear charge radius of muonic Ra

 $\Rightarrow$  Long-living isotopes in Ra: <sup>226</sup>Ra (T<sub>1/2</sub>=1600 y), <sup>225</sup>Ra (T<sub>1/2</sub>=14.8 d), <sup>224</sup>Ra (T<sub>1/2</sub>=3.66 d), <sup>223</sup>Ra (T<sub>1/2</sub>=11.43 d)



It can be extended to other short-lived nuclei

Or it can be done by stopping muons in thin films of hydrogen P. Strasser, et al. Nucl. Phys. B, Proc. Suppl. **149 (2005) 390-392.** 

### **Muonic X-rays from Rhenium**

Experimental challenges



- Hyperfine splitting due to Rhenium large deformation
- With  $10^4 \,\mu$ '/s 10h (70% coax. Ge detector ,  $\epsilon$ (1.33) = 0.7%)
- With 10<sup>2</sup> μ<sup>-</sup>/s ??

#### Muon capture and neutrons



Once in the 1S state the muon can

- decay (lifetime = 2.2 us)  $\mu^- \rightarrow e + \nu_e + \nu_\mu$
- be captured by the nucleus

$$p + \mu^- \rightarrow n + \nu_\mu$$



#### **MUON CAPTURE**

• Populate **highly excited states** in nuclei (in the range 10-20 MeV)

• Majority of the atoms populate excited states reaching beyond the **neutron separation** energy

1 to 2 neutron emitted per muon capture DAMAGE DUE TO NEUTRON DOSE?

### **Neutron Damage**

#### neutron flux of $\sim$ 3×10<sup>9</sup> n/cm<sup>2</sup> over a period of 5 days



#### Perspective



- Measure of Ra radius, 2016-2017 Test of Miniball clusters (KULeuven, Koeln) in magnetic field Measurement of X-rays (target to be developed)
- Workshop on PV in muonic atoms and Measurement of Nuclear Charge Radii, 2016 Theoretical motivation, experimental feasibility

Design a PV setup, 2016-2017

### Collaboration

A. Antognini, K. Kirch, A. Knecht, E. Rapisarda, *Paul Scherrer Institut, Villigen and ETH Zürich, Switzerland*N. Berger, D. vom Bruch, F. Wauters, *University of Mainz, Germany*P. Indelicato, *LKB Paris, France*K. Jungmann, L. Willmann, *University of Groningen, The Netherlands*P. Kammel, *University of Washington, Seattle, USA*M. Pospelov, *University of Victoria and Perimeter Institute, Canada*N. Severijns, *KU Leuven, Belgium*

### Muon Facilities in the world



Future



### **Expression of Interest**

# 1. Measurement of Atomic Parity Violation effects in muonic atoms

2. Measurement of the nuclear charge radius of radioactive muonic Ra

| PRL 108, 263401 (2012) | PHYSICAL | REVIEW | LETTERS | week ending<br>29 JUNE 201 |
|------------------------|----------|--------|---------|----------------------------|
| PRL 108, 263401 (2012) | PHYSICAL | REVIEW | LETTERS | 29 JUNE 20                 |

#### Testing Parity with Atomic Radiative Capture of $\mu^-$

David McKeen<sup>1</sup> and Maxim Pospelov<sup>1,2</sup> <sup>1</sup>Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada <sup>2</sup>Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9, Canada (Received 22 March 2012; published 29 June 2012)



Nuclear Physics A

Volume 475, Issue 4, 28 December 1987, Pages 615-629



Polarization transfer from polarized nuclear spin to  $\mu^-$  spin in muonic atom

Yoshitaka Kuno<sup>1</sup>, Kanetada Nagamine

MUON REPOLARIZATION

Toshimitsu Yamazaki

V.S. Evseev, in: V.W. Hughes, C.S. Wu (Eds.), Muon Physics III Academic Press, New York, 1975, p. 235.



