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With the Higgs discovery, 
the SM has been established !

Higgs

But still a lingering problem, the lightness of the Higgs…

…demanding new-physics! 
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With the Higgs, by measuring its properties ,
we have access to new & relevant information about BSMs

The Higgs is usually the most “sensitive”  
SM particle to new-physics

Main importance of the Higgs discovery:



1) MSSM:

Gauge bosons:

Higgs:
h

H

superpartners

~ loop effects

~ tree-level effects

Z Z

Effects in Higgs physics
can be a factor 16π2 ~ 100 larger!

f

f

Examples:

☛



1) MSSM:

Gauge bosons:

Higgs:

Examples:

h
H

superpartners

~ loop effects

~ tree-level effects

Z Z

Effects in Higgs physics
can be a factor 16π2 ~ 100 larger!

f

f

☛
2) Composite models:

Gauge bosons:

Higgs:
h h

Z Z

⇠ g2Hv2

⇤2
⇠ 16⇡2v2

⇤2

“strong” Higgs coupling

⇠ g2v2

⇤2
(Λ=composite scale)

strong
dynamics

strong
dynamics

☛



1) MSSM:

Gauge bosons:

Higgs:

Examples:

h
H

superpartners

~ loop effects

~ tree-level effects

Z Z

Effects in Higgs physics
can be a factor 16π2 ~ 100 larger!

f

f

☛
2) Composite models:

Gauge bosons:

Higgs:
h h

Z Z

⇠ g2Hv2

⇤2
⇠ 16⇡2v2

⇤2

“strong” Higgs coupling

⇠ g2v2

⇤2
(Λ=composite scale)

strong
dynamics

strong
dynamics

☛➥ Even with less statistics at the LHC, 

similar impact today in new-physics as LEP 



Rationale for a Higgs-coupling parametrization



Integrating out new-physics in a generic BSM:

1) Quite conservatively, we can assume  Λ ≫ E, mh

3 The SM predictions for Higgs couplings
In the SM the Higgs sector is given by

LSM
h = |DµH|2 � (yu ¯QL

eHuR + yd ¯QLHdR + ye ¯LLHeR + h.c.) + µ2|H|2 � �|H|4 , (12)

where the complex Higgs field H is a 21/2 of SU(2)L⇥U(1)Y , eH = i�2H⇤, and

QL =

✓
uL

dL

◆
, LL =

✓
⌫L
eL

◆
. (13)

When the Higgs gets a vacuum expectation value (VEV), hHi = (0 v/
p
2)

T , where v ' 246 GeV, the
gauge bosons W/Z and fermions get a mass proportional to their coupling to the Higgs field. Out of
the 4 degrees of freedom in H , 3 corresponds to the would-be Nambu-Golstone bosons that become the
longitudinal component of the W and Z, and the 4th is the Higgs particle h. In the SM all couplings of
the Higgs are predicted as a function of particle masses. We have, at tree-level, that the only nonzero
couplings are

ghff = �
gmf

2mW
, ghV V = gmW , g3h = �

3gm2
h

2mW
, (14)

that lead to the straight line of Fig. 1. The rest of the Higgs couplings arise at the loop level; GG is
mainly induced by the top loop, while �� and Z� are generated by W and top loops, as can be found
for example in [10].

4 Higgs couplings in an Effective Field Theory approach to the SM
Let us consider BSMs characterized by a mass-scale ⇤ much larger than the electroweak scale mW , such
that, after integrating out the BSM sector, we can make an expansion not only in derivatives Dµ over ⇤,
as we did in previous sections, but also an expansion of SM fields over ⇤. In this way we can obtain an
Effective Field Theory (EFT) made of local operators: 3
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Here Ld denotes the term in the expansion made of local operators of dimension d, while g⇤ denotes a
generic coupling, and g and Fµ⌫ represent respectively the SM gauge couplings and field-strengths. The
Lagrangian in Eq. (15) is based on dimensional analysis and the dependence on the coupling g⇤ is easily
obtained when the Planck constant ~ is put back in place. Indeed, working with units ~ 6= 1, the couplings
have dimensions [g⇤] = [~]�1/2, while [H] = L�1 · [~]1/2 and the Lagrangian mass-terms [⇤] = L�1.
This dictates the dimensionless expansion-parameters to be g⇤H/⇤ and Dµ/⇤, and that terms in the
Lagrangian that contains n fields must carry n � 2 couplings to have the right dimensions. This counting
is therefore valid even if g⇤ is not small. Although we are using a generic coupling and mass-scale, g⇤
and ⇤, it is clear that this ought not to be always the case. For example, for a strongly-interacting light
Higgs (SILH) [4] only the couplings of the Higgs to the strong BSM sector are large (g⇤ � 1 for the
Higgs), while SM fermions are assumed to have small couplings (g⇤ ⇠ p

yf for fermions).
The Lagrangian terms of L4 redefine the SM (and have no physical impact), while L6 encodes

the dominant BSM effects. Therefore the study of the physical implications of L6 in the physics of the
SM is of great importance. There are different bases used in the literature for the set of independent
d = 6 operators in L6. Although physics is independent of the choice of basis, it is clear that some
bases are better suited than others in order to extract the relevant information, e.g., for Higgs physics.

3This EFT also contains operators of dimension five, L5, but these induce neutrino masses and therefore their coefficients
must be very small (or their suppression scale ⇤ very large). For this reason we neglect them here since they cannot play any
role for Higgs physics at the TeV.
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Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 
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Fig. 1: Fit of the Higgs couplings, gh
ff and

q
gh

V V /2v, and predictions from the SM [2]. A generic scalar would
have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.

for later the implications when an expansion of SM fields over ⇤ can be also carried out. We assume that
the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
suppressed by phase space). Then, for CP-conserving couplings, we have without loss of generality
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where Jµ
N =

¯f�µf (for f = fL, fR) and Jµ
C =

¯f�µf 0 are respectively the neutral and charged cur-
rents. Flavour indices are implicit. We also defined c✓W ⌘ cos ✓W where ✓W is the weak-angle,
and GA

µ⌫ ⌘ @µGA
⌫ � @⌫GA

µ for gluons, and similarly for the photon, Aµ, the Zµ and W+
µ . We can

use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
1From here and on, all Higgs-coupling coefficients are defined real.
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µ for gluons, and similarly for the photon, Aµ, the Zµ and W+
µ . We can

use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
some linear combinations of the contact-interactions hVµJµ could be written as interactions of the type
hVµ@⌫Fµ⌫ [4] by the redefinition Vµ ! (1 + ↵h)Vµ, with an appropriate ↵, in the full Lagrangian (and
using integration by parts). Nevertheless, we consider that Eq. (2) and Eq. (3) are the most convenient

1From here and on, all Higgs-coupling coefficients are defined real.
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up to

g�i�j�k =
�LEFT

��i��j��k

(assuming CP-conservation)

	  	  	  	  	  	  	  	  	  	  	  	  :	  currents of SM fermionsJµ
N,C



Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 

@CMSexperiment @ICHEP2014 

100 

a.david@cern.ch 

SM Higgs 
prediction

  H
ig

gs
 c

ou
pl

in
g

➥ suggests that the SM is a good approximation in nature!

Empirical evidence, Higgs (and Z/W) couplings follow SM predictions:

3 The SM predictions for Higgs couplings
In the SM the Higgs sector is given by
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When the Higgs gets a vacuum expectation value (VEV), hHi = (0 v/
p
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T , where v ' 246 GeV, the
gauge bosons W/Z and fermions get a mass proportional to their coupling to the Higgs field. Out of
the 4 degrees of freedom in H , 3 corresponds to the would-be Nambu-Golstone bosons that become the
longitudinal component of the W and Z, and the 4th is the Higgs particle h. In the SM all couplings of
the Higgs are predicted as a function of particle masses. We have, at tree-level, that the only nonzero
couplings are
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that lead to the straight line of Fig. 1. The rest of the Higgs couplings arise at the loop level; GG is
mainly induced by the top loop, while �� and Z� are generated by W and top loops, as can be found
for example in [10].
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mainly induced by the top loop, while �� and Z� are generated by W and top loops, as can be found
for example in [10].

4 Higgs couplings in an Effective Field Theory approach to the SM
Let us consider BSMs characterized by a mass-scale ⇤ much larger than the electroweak scale mW , such
that, after integrating out the BSM sector, we can make an expansion not only in derivatives Dµ over ⇤,
as we did in previous sections, but also an expansion of SM fields over ⇤. In this way we can obtain an
Effective Field Theory (EFT) made of local operators: 3
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Here Ld denotes the term in the expansion made of local operators of dimension d, while g⇤ denotes a
generic coupling, and g and Fµ⌫ represent respectively the SM gauge couplings and field-strengths. The
Lagrangian in Eq. (15) is based on dimensional analysis and the dependence on the coupling g⇤ is easily
obtained when the Planck constant ~ is put back in place. Indeed, working with units ~ 6= 1, the couplings
have dimensions [g⇤] = [~]�1/2, while [H] = L�1 · [~]1/2 and the Lagrangian mass-terms [⇤] = L�1.
This dictates the dimensionless expansion-parameters to be g⇤H/⇤ and Dµ/⇤, and that terms in the
Lagrangian that contains n fields must carry n � 2 couplings to have the right dimensions. This counting
is therefore valid even if g⇤ is not small. Although we are using a generic coupling and mass-scale, g⇤
and ⇤, it is clear that this ought not to be always the case. For example, for a strongly-interacting light
Higgs (SILH) [4] only the couplings of the Higgs to the strong BSM sector are large (g⇤ � 1 for the
Higgs), while SM fermions are assumed to have small couplings (g⇤ ⇠ p

yf for fermions).
The Lagrangian terms of L4 redefine the SM (and have no physical impact), while L6 encodes

the dominant BSM effects. Therefore the study of the physical implications of L6 in the physics of the
SM is of great importance. There are different bases used in the literature for the set of independent
d = 6 operators in L6. Although physics is independent of the choice of basis, it is clear that some
bases are better suited than others in order to extract the relevant information, e.g., for Higgs physics.

3This EFT also contains operators of dimension five, L5, but these induce neutrino masses and therefore their coefficients
must be very small (or their suppression scale ⇤ very large). For this reason we neglect them here since they cannot play any
role for Higgs physics at the TeV.
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We can also expand in the Higgs field (and other SM fields):
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➥ suggests that the SM is a good approximation in nature!

Empirical evidence, Higgs (and Z/W) couplings follow SM predictions:
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the 4 degrees of freedom in H , 3 corresponds to the would-be Nambu-Golstone bosons that become the
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the Higgs are predicted as a function of particle masses. We have, at tree-level, that the only nonzero
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The Lagrangian terms of L4 redefine the SM (and have no physical impact), while L6 encodes

the dominant BSM effects. Therefore the study of the physical implications of L6 in the physics of the
SM is of great importance. There are different bases used in the literature for the set of independent
d = 6 operators in L6. Although physics is independent of the choice of basis, it is clear that some
bases are better suited than others in order to extract the relevant information, e.g., for Higgs physics.

3This EFT also contains operators of dimension five, L5, but these induce neutrino masses and therefore their coefficients
must be very small (or their suppression scale ⇤ very large). For this reason we neglect them here since they cannot play any
role for Higgs physics at the TeV.
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obtained when the Planck constant ~ is put back in place. Indeed, working with units ~ 6= 1, the couplings
have dimensions [g⇤] = [~]�1/2, while [H] = L�1 · [~]1/2 and the Lagrangian mass-terms [⇤] = L�1.
This dictates the dimensionless expansion-parameters to be g⇤H/⇤ and Dµ/⇤, and that terms in the
Lagrangian that contains n fields must carry n � 2 couplings to have the right dimensions. This counting
is therefore valid even if g⇤ is not small. Although we are using a generic coupling and mass-scale, g⇤
and ⇤, it is clear that this ought not to be always the case. For example, for a strongly-interacting light
Higgs (SILH) [4] only the couplings of the Higgs to the strong BSM sector are large (g⇤ � 1 for the
Higgs), while SM fermions are assumed to have small couplings (g⇤ ⇠ p

yf for fermions).
The Lagrangian terms of L4 redefine the SM (and have no physical impact), while L6 encodes

the dominant BSM effects. Therefore the study of the physical implications of L6 in the physics of the
SM is of great importance. There are different bases used in the literature for the set of independent
d = 6 operators in L6. Although physics is independent of the choice of basis, it is clear that some
bases are better suited than others in order to extract the relevant information, e.g., for Higgs physics.

3This EFT also contains operators of dimension five, L5, but these induce neutrino masses and therefore their coefficients
must be very small (or their suppression scale ⇤ very large). For this reason we neglect them here since they cannot play any
role for Higgs physics at the TeV.
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We can also expand in the Higgs field (and other SM fields):

there is a caveat to be discussed later!



There are plenty of correlations among possible deviations 
              ☛ this is the important information to extract

➥ Not all type of Higgs couplings can arise from       !

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

H†DµHf̄�µf

=
1

2v
⇥

☛  Correlation between h→Zff  and Z→ff      

For example:
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Fig. 1: Fit of the Higgs couplings, gh
ff and

q
gh

V V /2v, and predictions from the SM [2]. A generic scalar would
have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.

for later the implications when an expansion of SM fields over ⇤ can be also carried out. We assume that
the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
suppressed by phase space). Then, for CP-conserving couplings, we have without loss of generality
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h
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Zµ⌫Zµ⌫ , (3)

where Jµ
N =

¯f�µf (for f = fL, fR) and Jµ
C =

¯f�µf 0 are respectively the neutral and charged cur-
rents. Flavour indices are implicit. We also defined c✓W ⌘ cos ✓W where ✓W is the weak-angle,
and GA

µ⌫ ⌘ @µGA
⌫ � @⌫GA

µ for gluons, and similarly for the photon, Aµ, the Zµ and W+
µ . We can

use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
1From here and on, all Higgs-coupling coefficients are defined real.

2

Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 

@CMSexperiment @ICHEP2014 

100 

a.david@cern.ch 

A better perspective to understand how close to a SM Higgs: 

SM Higgs !
prediction

generic scalar!
prediction

● ●

●●

●

!   H
ig

gs
 c

ou
pl

in
g

Fig. 1: Fit of the Higgs couplings, gh
ff and

q
gh

V V /2v, and predictions from the SM [2]. A generic scalar would
have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.

for later the implications when an expansion of SM fields over ⇤ can be also carried out. We assume that
the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
suppressed by phase space). Then, for CP-conserving couplings, we have without loss of generality

1

Lprimary
h = ghV V h

"
W+µW�

µ +

1

2c2✓W
ZµZµ

#
+

1

6

g3h h3
+ ghff

�
h ¯fLfR + h.c.

�

+ GG
h

2v
GAµ⌫GA

µ⌫ + ��
h

2v
Aµ⌫Aµ⌫ + Z�

h

v
Aµ⌫Zµ⌫ , (2)

and

�Lh = �ghZZ h
ZµZµ

2c2✓W
+ ghZff

h

2v

�
ZµJµ

N + h.c.
�
+ ghWff 0

h

v

�
W+

µ Jµ
C + h.c.

�

+ WW
h

v
W+µ⌫W�

µ⌫ + ZZ
h

2v
Zµ⌫Zµ⌫ , (3)

where Jµ
N =

¯f�µf (for f = fL, fR) and Jµ
C =

¯f�µf 0 are respectively the neutral and charged cur-
rents. Flavour indices are implicit. We also defined c✓W ⌘ cos ✓W where ✓W is the weak-angle,
and GA

µ⌫ ⌘ @µGA
⌫ � @⌫GA

µ for gluons, and similarly for the photon, Aµ, the Zµ and W+
µ . We can

use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
1From here and on, all Higgs-coupling coefficients are defined real.

2

independent from other SM couplings

correlated to other SM couplings

Higgs couplings
(assuming CP-conservation)

indirectly “measured”

	  	  	  	  	  	  	  	  	  	  	  	  :	  currents of SM fermionsJµ
N,C



htt, hbb, h𝝉𝝉

GGh coupling

hγγ coupling

hVV

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
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µuR) , O(8)u
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µTAQL)(ūR�
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Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.
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µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.

5

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�
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|H|2|DµH|2

|H|6

|H|2f̄LHfR + h.c.

8  Primary Higgs couplings  
related to 8 dim-six operators with |H|2    

(CP-conserving)

(custodial invariant)

for one family

hZγ coupling

h3 coupling

Elias-Miro, Espinosa, Masso, AP,  JHEP 1311 (2013) 066
                                 AP, Riva, JHEP 1401 (2014) 151

(on the vacuum |H|2 =v2, they give a SM operator)



Other reason why primary Higgs couplings  
are the most important ones:

Receive the largest contributions from main BSM

hff hVV hγγ hγZ hGG h3

MSSM √ √
NMSSM √ √ √ √ √ √

PGB Composite √ √ √ √
SUSY Composite √ √ √

SUSY partly-composite √ √ √ √
“Bosonic TC” √

Higgs as a dilaton √ √ √ √

Expected largest corrections to Higgs couplings in BSM scenarios:

We have specific patterns!
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V V /2v, and predictions from the SM [2]. A generic scalar would
have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.
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the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.
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Higgs couplings
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(assuming CP-conservation)

correlated to other SM couplings
indirectly “measured”
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Almost all Higgs primaries have been 
measured at the LHC (the “kappas”):
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correlated to other SM couplings
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Fit	results:	couplings	
•  Absolute	couplings	fits	

need	an	assumption	
•  Two	considered	in	the	

LHC	combination:	
–  Only	SM	Higgs	decay	

modes:	Γtot	=	Σ	ΓSM(κ)	
–  An	upper	bound	κ	≤	1		

for	W	and	Z	couplings	

•  Most	κi	<	1,	since	a	low	
fitted	κb	boosts	all	other	
decay	BRs	reducing	Γbb		
–  μ		~		κprod

2	κdecay
2	/	κb

2		

(very	approximately)	
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Higgs couplings

Almost all Higgs primaries have been 
measured at the LHC (the “kappas”):

(f=b, 𝝉, t)

(assuming CP-conservation)

correlated to other SM couplings
indirectly “measured”

Fit	results:	couplings	
•  Absolute	couplings	fits	

need	an	assumption	
•  Two	considered	in	the	

LHC	combination:	
–  Only	SM	Higgs	decay	

modes:	Γtot	=	Σ	ΓSM(κ)	
–  An	upper	bound	κ	≤	1		

for	W	and	Z	couplings	

•  Most	κi	<	1,	since	a	low	
fitted	κb	boosts	all	other	
decay	BRs	reducing	Γbb		
–  μ		~		κprod

2	κdecay
2	/	κb

2		

(very	approximately)	
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➥  A deviation only on the  
coupling to the top,  
not expected in MSSM  
or Minimal Composite 
Higgs models



Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 
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Fig. 1: Fit of the Higgs couplings, gh
ff and
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gh

V V /2v, and predictions from the SM [2]. A generic scalar would
have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.
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Only two remain to be measured:

(f=b, 𝝉, t)

h→Zγ

pp→h*→hh

correlated to other SM couplings
indirectly “measured”

Higgs couplings (assuming CP-conservation)



Impact on BSM from  
Higgs coupling measurements

●  Today, as Higgs coupling measurements agree with    
    the SM, we only place bounds on new-physics

The Higgs is our best weapon of BSM mass-destruction 



Higgs coupling measurements are already 
ruling out regions of the MSSM parameter space8 HIGGS PORTAL TO DARK MATTER 12
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Figure 5: Regions of the (mA, tan �) plane excluded in a simplified MSSM model via fits to the measured
rates of Higgs boson production and decays. The likelihood contours where �2 ln⇤ = 6.0, corresponding
approximately to 95% CL (2�), are indicated for the data and expectation assuming the SM Higgs sector.
The light shaded and hashed regions indicate the observed and expected exclusions, respectively. The
SM decoupling limit is mA ! 1.

for 2  tan �  10, with the limit increasing to larger masses for tan � < 2. The observed limit is
stronger than expected since the measured rates in the h ! �� (expected to be dominated by a W boson
loop) and h ! ZZ⇤ ! 4` channels are higher than predicted by the SM, but the simplified MSSM
has a physical boundary V  1 so the vector boson coupling cannot be larger than the SM value. The
physical boundary is accounted for by computing the profile likelihood ratio with respect to the maximum
likelihood obtained within the physical region of the parameter space, mA >0 and tan � >0. The range
0 tan � 10 is shown as only that part of the parameter space was scanned in the present version of this
analysis. The compatible region extends to larger tan � values.

The results reported here pertain to the simplified MSSM model studied and are not fully general.
The MSSM includes other possibilities such as Higgs boson decays to supersymmetric particles, decays
of heavy Higgs bosons to lighter ones, and e↵ects from light supersymmetric particles [60] which are
not investigated here.

8 Higgs Portal to Dark Matter

Many “Higgs portal” models [14,34,61–65] introduce an additional weakly-interacting massive particle
(WIMP) as a dark matter candidate. It is assumed to interact very weakly with the SM particles, except
for the Higgs boson. In this study, the coupling of the Higgs boson to the WIMP is taken to be a free
parameter.

The upper limit on the branching ratio of the Higgs boson to invisible final states, BRi, is derived
using the combination of rate measurements from the h ! ��, h ! ZZ⇤ ! 4`, h ! WW⇤ ! `⌫`⌫,
h! ⌧⌧, and h! bb̄ channels, together with the measured upper limit on the rate of the Zh! ``+ Emiss

T
process. The couplings of the Higgs boson to massive particles other than the WIMP are assumed to be
equal to the SM predictions, allowing the corresponding partial decay widths and invisible decay width
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Figure 1: Two-dimensional likelihood scan of the mass scaling factor, ✏, and the vacuum expectation
value parameter, M. The likelihood contours where �2 ln⇤ = 2.3 and �2 ln⇤ = 6.0, corresponding
approximately to 68% CL (1�) and 95% CL (2�) respectively, are shown for both the data and the
prediction for a SM Higgs boson. The best fit to the data and the SM expectation are indicated as ⇥ and
+ respectively.

are interpreted in the MCHM4 scenario by rescaling the rates in di↵erent production and decay modes
as functions of the couplings  = V = F , assuming the same production and decay modes as in the SM.
The couplings are in turn expressed as functions of ⇠ using Eq. 7.

The MCHM4 model contains a physical boundary ⇠ � 0, with the SM Higgs boson corresponding to
⇠ = 0. Ignoring this boundary, the scaling parameter is measured to be ⇠ = 1�µh = �0.30+0.17

�0.18, while the
expectation assuming the SM Higgs boson is 0.00+0.15

�0.17. The best-fit value observed for ⇠ is negative since
µh >1 is measured. The statistical and systematic uncertainties are of similar size. Accounting for the
lower boundary produces an observed (expected) 95% CL upper limit of ⇠ < 0.12 (0.29), corresponding
to a Higgs boson compositeness scale of f >710 GeV (460 GeV). The observed limit is stronger than
expected since µh >1 is measured.

Similarly, in the MCHM5 model [27,28] the measured rates are expressed in terms of ⇠ by rewriting
the couplings as:

V =
p

1 � ⇠

F =
1�2⇠p

1�⇠
.

(8)

The measurements of V and F are given in Model 2 of Table 1. As with the MCHM4 model, the
MCHM5 model contains the physical boundary ⇠ � 0, with the SM Higgs boson corresponding to ⇠ = 0.
Ignoring this boundary, the composite Higgs boson scaling parameter is determined to be ⇠ = �0.08+0.11

�0.16,
while 0.00+0.11

�0.13 is expected assuming the SM Higgs boson. As above, the best-fit value for ⇠ is negative
since µh >1 is measured. Accounting for the boundary produces an observed (expected) 95% CL upper
limit of ⇠ < 0.15 (0.20), corresponding to a Higgs boson compositeness scale of f >640 GeV (550 GeV).
Figure 2 shows the two-dimensional likelihood for vector boson (V ) and fermion (F) coupling measure-
ments in the (V , F) plane, overlaid with predictions as parametric functions of ⇠ for the MCHM4 and
MCHM5 models. A secondary minimum in the likelihood exists at F < 0 due primarily to the large
measured h! �� rate [13].

MCHM4
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are interpreted in the MCHM4 scenario by rescaling the rates in di↵erent production and decay modes
as functions of the couplings  = V = F , assuming the same production and decay modes as in the SM.
The couplings are in turn expressed as functions of ⇠ using Eq. 7.

The MCHM4 model contains a physical boundary ⇠ � 0, with the SM Higgs boson corresponding to
⇠ = 0. Ignoring this boundary, the scaling parameter is measured to be ⇠ = 1�µh = �0.30+0.17
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expectation assuming the SM Higgs boson is 0.00+0.15

�0.17. The best-fit value observed for ⇠ is negative since
µh >1 is measured. The statistical and systematic uncertainties are of similar size. Accounting for the
lower boundary produces an observed (expected) 95% CL upper limit of ⇠ < 0.12 (0.29), corresponding
to a Higgs boson compositeness scale of f >710 GeV (460 GeV). The observed limit is stronger than
expected since µh >1 is measured.

Similarly, in the MCHM5 model [27,28] the measured rates are expressed in terms of ⇠ by rewriting
the couplings as:

V =
p
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F =
1�2⇠p

1�⇠
.

(8)

The measurements of V and F are given in Model 2 of Table 1. As with the MCHM4 model, the
MCHM5 model contains the physical boundary ⇠ � 0, with the SM Higgs boson corresponding to ⇠ = 0.
Ignoring this boundary, the composite Higgs boson scaling parameter is determined to be ⇠ = �0.08+0.11

�0.16,
while 0.00+0.11

�0.13 is expected assuming the SM Higgs boson. As above, the best-fit value for ⇠ is negative
since µh >1 is measured. Accounting for the boundary produces an observed (expected) 95% CL upper
limit of ⇠ < 0.15 (0.20), corresponding to a Higgs boson compositeness scale of f >640 GeV (550 GeV).
Figure 2 shows the two-dimensional likelihood for vector boson (V ) and fermion (F) coupling measure-
ments in the (V , F) plane, overlaid with predictions as parametric functions of ⇠ for the MCHM4 and
MCHM5 models. A secondary minimum in the likelihood exists at F < 0 due primarily to the large
measured h! �� rate [13].
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Higgs coupling measurements are already 
limiting the degree of compositeness of the Higgs5 ADDITIONAL ELECTROWEAK SINGLET 6
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Figure 2: Two-dimensional likelihood contours in the (V , F) coupling plane, where �2 ln⇤ = 2.3 and
�2 ln⇤ = 6.0 correspond approximately to 68% CL (1�) and 95% CL (2�) respectively. The coupling
predictions in the MCHM4 and MCHM5 models are shown as parametric functions of the Higgs boson
compositeness parameter ⇠ = v2/ f 2. The two-dimensional likelihood contours are shown for reference
and should not be used to estimate the exclusion for the single parameter ⇠.

5 Additional Electroweak Singlet

The simplest extension to the SM Higgs sector involves the addition of an EW singlet field [25, 30–35]
to the doublet Higgs field of the SM, providing a possible answer to the dark matter problem. Both fields
acquire non-zero vacuum expectation values. Spontaneous symmetry breaking leads to mixing between
the singlet state and the surviving state of the doublet field, resulting in two CP-even Higgs bosons,
where h (H) denotes the lighter (heavier) of the pair. The two Higgs bosons, h and H, are assumed to be
non-degenerate. They couple to fermions and vector bosons in a similar way as the SM Higgs boson, but
each with a strength reduced by a common scale factor, denoted as  for h and 0 for H. The constraint
of unitarity implies that:

2 + 02 = 1. (9)

In this model, the lighter Higgs boson h is assumed to have identical production and decay modes to
those of the SM Higgs boson, but with rates modified according to:

�h = 2 ⇥ �h,SM

�h = 2 ⇥ �h,SM

BRh,i = BRh,SM,i,

(10)

where � denotes the production cross section, � denotes the total decay width, BR denotes the branching
ratio, and i indexes the di↵erent decay modes.

For the heavier Higgs boson H, new decay modes such as H ! hh are possible if they are kinemati-
cally accessible. In this case, the production and decay rates of the H boson are modified with respect to
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Figure 2: Two-dimensional likelihood contours in the (V , F) coupling plane, where �2 ln⇤ = 2.3 and
�2 ln⇤ = 6.0 correspond approximately to 68% CL (1�) and 95% CL (2�) respectively. The coupling
predictions in the MCHM4 and MCHM5 models are shown as parametric functions of the Higgs boson
compositeness parameter ⇠ = v2/ f 2. The two-dimensional likelihood contours are shown for reference
and should not be used to estimate the exclusion for the single parameter ⇠.

5 Additional Electroweak Singlet

The simplest extension to the SM Higgs sector involves the addition of an EW singlet field [25, 30–35]
to the doublet Higgs field of the SM, providing a possible answer to the dark matter problem. Both fields
acquire non-zero vacuum expectation values. Spontaneous symmetry breaking leads to mixing between
the singlet state and the surviving state of the doublet field, resulting in two CP-even Higgs bosons,
where h (H) denotes the lighter (heavier) of the pair. The two Higgs bosons, h and H, are assumed to be
non-degenerate. They couple to fermions and vector bosons in a similar way as the SM Higgs boson, but
each with a strength reduced by a common scale factor, denoted as  for h and 0 for H. The constraint
of unitarity implies that:

2 + 02 = 1. (9)

In this model, the lighter Higgs boson h is assumed to have identical production and decay modes to
those of the SM Higgs boson, but with rates modified according to:

�h = 2 ⇥ �h,SM

�h = 2 ⇥ �h,SM

BRh,i = BRh,SM,i,

(10)

where � denotes the production cross section, � denotes the total decay width, BR denotes the branching
ratio, and i indexes the di↵erent decay modes.

For the heavier Higgs boson H, new decay modes such as H ! hh are possible if they are kinemati-
cally accessible. In this case, the production and decay rates of the H boson are modified with respect to
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motivated to keep naturalness

in the absence of superpartners below TeV 

and mh~125 GeV (hard susy-breaking effects?)
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Possibilities:

 ☛ that could also break the EW symmetry 
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1) Strong-sector with accidental (“emergent”) supersymmetry  
        delivering a composite-susy light Higgs (mh≪Λ~ TeV)

T.Gherghetta, AP 03,R. Sundrum 04,M.Redi, B.Gripaios 10

2) MSSM Higgs coupled to a TeV strong-sector breaking Susy:

M.Dine,A.Kagan,S. Samuel 90 

3) Higgs as a dilaton:  v = fdilation  (associated to the breaking of scale invariance)



A. Azatov, J.Galloway and M. A. Luty 12 

T. Gherghetta, AP 11

M.Dine,A.Kagan,S. Samuel 90 

2) Higgs coupled to a TeV strong-sector breaking also
     EW symmetry (Bosonic TechniColor (TC)):

● Important: Invalidates the EFT description,
   since new source of EWSB other than the Higgs: 

● Still small deformations of hVV & hff Higgs couplings, 
   if the Higgs has a small mixing with the TC sector

The BSM has heavy tachyons!
It is non-decoupling!

Ê
Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

ÏÏ

ATLAS + CMS H68, 95%L
solid: 25 fb-1û7+8 TeV
dashed: 300 fb-1û14 TeV

mA=250 GeV
300

400
600

mA=250 GeV
300

400 600

strong
lS = 2

0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.6

0.8

1.0

1.2

1.4

kV

k f

Fig. 5. Higgs couplings from ATLAS and CMS, with model trajectories following varying

values of the light CP-odd scalar mass; in each case we set the self-coupling of H to zero

in the potential, corresponding to tan� = 1, and take �
⌃

= 2 in the perturbative case. We

show the present status at 68 and 95% CL, with best fit indicated by a diamond, along with

projections for measurements at the 14 TeV LHC assuming injection of a SM Higgs signal.

can nearly probe the entire allowed parameter space with only 20 fb�1, as shown

in the blue dashed line in Fig. 4. (We cannot project the A0 ! Zh search below

mA = 225 GeV, the smallest mass considered in the current experimental analysis,

but it is clear that the search has sensitivity down to mA & mh + mZ .) This will

therefore be an early discovery mode at the 14 TeV LHC in this class of models. We

also projected how sensitive the direct searches for ⌧⌧ and tt̄ will be with 300 fb�1

at the 14 TeV LHC. Note that the A0 ! tt̄ search is still not sensitive and so is not

included in the plot.

The Higgs coupling fit improves only marginally for 300 fb�1 [33]. Assuming that

the central value is equal to the standard model, we find a constraint of f < 59 GeV.

The reason for this rather weak improvement can be seen in Fig. 5. The current best

fit point shows a mild preference for a reduced fermion coupling and an enhanced

vector coupling compared to the SM, which is the opposite of what the model predicts

(see Eq. (2.14)). That is, the current bound is stronger than the expected limit, and
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In the strongly-coupled model, we expect additional e↵ects from the production
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We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
suppressed by phase space). Then, for CP-conserving couplings, we have without loss of generality

1

Lprimary
h = ghV V h

"
W+µW�

µ +

1

2c2✓W
ZµZµ

#
+

1

6

g3h h3
+ ghff

�
h ¯fLfR + h.c.

�

+ GG
h

2v
GAµ⌫GA

µ⌫ + ��
h

2v
Aµ⌫Aµ⌫ + Z�

h

v
Aµ⌫Zµ⌫ , (2)

and

�Lh = �ghZZ h
ZµZµ

2c2✓W
+ ghZff

h

2v

�
ZµJµ

N + h.c.
�
+ ghWff 0

h

v

�
W+

µ Jµ
C + h.c.

�

+ WW
h

v
W+µ⌫W�

µ⌫ + ZZ
h

2v
Zµ⌫Zµ⌫ , (3)

where Jµ
N =
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¯f�µf 0 are respectively the neutral and charged cur-
rents. Flavour indices are implicit. We also defined c✓W ⌘ cos ✓W where ✓W is the weak-angle,
and GA
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µ for gluons, and similarly for the photon, Aµ, the Zµ and W+
µ . We can

use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
some linear combinations of the contact-interactions hVµJµ could be written as interactions of the type
hVµ@⌫Fµ⌫ [4] by the redefinition Vµ ! (1 + ↵h)Vµ, with an appropriate ↵, in the full Lagrangian (and
using integration by parts). Nevertheless, we consider that Eq. (2) and Eq. (3) are the most convenient

1From here and on, all Higgs-coupling coefficients are defined real.
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We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
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Lh = Lprimary
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We will only keep interactions up to order O(h3
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) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
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some linear combinations of the contact-interactions hVµJµ could be written as interactions of the type
hVµ@⌫Fµ⌫ [4] by the redefinition Vµ ! (1 + ↵h)Vµ, with an appropriate ↵, in the full Lagrangian (and
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the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.
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) since they are the most
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the interactions preserve SU(3)c⇥U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h +�Lh . (1)

We will only keep interactions up to order O(h3
), O(h@2V 2

) and O(hV f2
) since they are the most

relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of ⇤,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
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We have chosen as Higgs primary couplings those in Eq. (2), as all of them can be independently
generated from the operators of Eq. (16). We must be aware however that the correspondence is not one-
to-one [8, 16]. There is a certain freedom to choose the set of Higgs primary couplings. For example,
instead of �� and Z� , we could have taken ZZ,WW , as these latter can also receive independent con-
tributions from Eq. (16). The reason to choose Eq. (2) as Higgs primary couplings it is just experimental:
they are the set of primary Higgs couplings best measured at the LHC.

Similarly, the CP-violating dimension-6 operators constructed with |H|2 are

i|H|2 ¯QL
eHuR � h.c. , i|H|2 ¯QLHdR � h.c. , i|H|2 ¯LLHeR � h.c. ,

|H|2GAµ⌫ eGA
µ⌫ , |H|2Bµ⌫ eBµ⌫ , |H|2W aµ⌫fW a

µ⌫ . (17)

that generate the set of primary Higgs couplings of Eq. (4). Again, all these operators for |H|2 ! v2/2
generate SM terms (that redefine SM parameters) and therefore their effects can only be seen in Higgs
couplings.

The primary Higgs couplings can enter at the quantum level in other non-Higgs observables. For
example, the CP-violating Higgs couplings can contribute at the loop-level to the neutron and electron
electric dipole moment (EDM). The fact that we have excellent bounds on these EDM, place indirect
bounds on these Higgs couplings. Nevertheless, we must be aware that these bounds will always be
model-dependent, as there can be, in principle, other BSM effects entering in the EDM.

4.2 Beyond the primaries
The rest of Higgs couplings, beyond the primaries, are those of Eq. (3) for CP-conservation and at the
order we mentioned before. They can in principle be generated from operators in L6. 5 Nevertheless, it
can be proven [8,16] that contributions from L6 to Eq. (3) are not independent from contributions to pri-
mary Higgs couplings and other electroweak couplings. Therefore they can, in principle, be constrained
by other experimental measurements. As an example, consider the operator H†DµHēR�µeR. This gives
a contribution to the Higgs coupling ghZff , but it also contributes to the coupling ZēReR that has been
very-well measured at LEP, putting strong bounds on possible BSM effects.

The explicit relations between the L6-contributions to Eq. (3) and to other couplings were explic-
itly calculated in [13, 16, 19] assuming family universality. Here we give these relations for the general
case (derived at the tree-level):
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, gWff 0 =

gp
2

VCKM, 0 for f = fL, fR , (21)

5At O(hFff) we also have dipole-type interactions that can arise from L6. Their Wilson coefficients are however expected
to be suppressed by SM Yukawa-couplings (otherwise could largely contribute at the loop level to the SM fermion masses).
These couplings are related to fermion EDMs as can be found in [19].
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operators of Eq. (16). We must be aware however that the correspondence is not one-to-one [9, 19].
There is a certain freedom to choose the set of primary Higgs couplings. For example, instead of ��

and Z� , we could have taken ZZ,WW , as these latter can also receive independent contributions from
Eq. (16). The reason to choose Eq. (2) as primary Higgs couplings it is just experimental: they are the
set of primary Higgs couplings best measured at the LHC.

Similarly, the CP-violating dimension-6 operators constructed with |H|2 are

i|H|2 ¯QL
eHuR + h.c. , i|H|2 ¯QLHdR + h.c. , i|H|2 ¯LLHeR + h.c. ,

|H|2GAµ⌫ eGA
µ⌫ , |H|2Bµ⌫ eBµ⌫ , |H|2W aµ⌫fW a

µ⌫ , (17)

that can independently generate the set of primary Higgs couplings of Eq. (4). Again, all these operators
for |H|2 ! v2/2 generate SM terms (that redefine SM parameters) and therefore their physical effects
can only be seen in Higgs physics.

The primary Higgs couplings can enter at the quantum level in other non-Higgs observables. For
example, the CP-violating Higgs couplings can contribute at the loop-level to the neutron and electron
electric dipole moment (EDM). The fact that we have excellent bounds on these EDMs, place indirect
bounds on these Higgs couplings. We must be aware however that these bounds are model-dependent,
as there can be, in principle, other BSM effects entering in the EDMs.

4.2 Beyond the primaries
The rest of CP-conserving Higgs couplings, beyond the primaries, are those of Eq. (3) at the order we
mentioned before. They can in principle be generated from operators in L6. 5 Nevertheless, it can be
proven [9, 19] that contributions from L6 to Eq. (3) are not independent from contributions to primary
Higgs couplings and other electroweak couplings. Therefore they can, in principle, be constrained by
other experimental measurements. As an example, consider the operator H†DµHēR�µeR. This gives
a contribution to the Higgs coupling ghZff , but it also contributes to the coupling ZēReR that has been
very-well measured at LEP, putting strong bounds on possible BSM effects.

The explicit relations between the L6-contributions to Eq. (3) and to other couplings were explic-
itly calculated in [13, 14, 19] assuming family universality. Here we give these relations for the general
case (derived at the tree-level) [6]:
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are the �, Z and W couplings to fermions in the SM. Flavor indices are again implicit. We have also
defined by �gZff (�gWff 0) the BSM corrections to the Z (W ) couplings to fermions:
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5At O(hFff) we also have dipole-type interactions that can arise from L6. Their Wilson coefficients are however expected
to be suppressed by SM Yukawa-couplings (otherwise could largely contribute at the loop level to the SM fermion masses).
These couplings are related to fermion EDMs as can be found in [13].
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a contribution to the Higgs coupling ghZff , but it also contributes to the coupling ZēReR that has been
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�
,
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Z
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c3✓W
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�� + 2

c2✓W
s2✓W

Z� + �� , WW = �� + Z� + �� , (19)
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�gZffVCKM � VCKM�gZf 0f 0

�
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�
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2
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�
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2

VCKM, 0 resp. for f = fL, fR , (21)
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�
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�
W+

µ Jµ
C + h.c.

�
, (22)

5At O(hFff) we also have dipole-type interactions that can arise from L6. Their Wilson coefficients are however expected
to be suppressed by SM Yukawa-couplings (otherwise could largely contribute at the loop level to the SM fermion masses).
These couplings are related to fermion EDMs as can be found in [13].
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of these 7 quantities. For example, for the case of h ! Zl̄l, we find

�aZlL
aZlL

2 [�0.2, 0.1] ,
�baZlL
baZlL

2 [�8, 7]⇥ 10�2 , bZlL 2 [�2, 5]⇥ 10�2, bbZlL 2 [�2, 5] ,⇥10�2,

�aZlR
aZlR

2 [�0.2, 0.3] ,
�baZlR
baZlR

2 [�8, 7]⇥ 10�2, bZlR 2 [�3, 2]⇥ 10�2, bbZlR 2 [�2, 5]⇥ 10�2 .

Although the allowed range in aZlL,R
is quite large, we notice that their impact on the total am-

plitude, when summed over lepton chiralities, is much smaller, 2
P

l=lL,lR
glZa

Z
l /

P
l=lL,lR

(glZ)
2 2

[�6, 4]⇥ 10�2.

It is interesting to notice that in the limit g0 ! 0 the result of Eq. (46) is custodial

invariant, i.e., one finds equal corrections for Z and W . This is because, for g0 ! 0, the

only Wilson coe�cients breaking the custodial symmetry are cT and cfL,R [1] that, being

constrained at the per-mille, have been dropped from Eq. (46). We then find that the test of

the custodial symmetry used at LHC [40] defined as

�2
WZ ⌘ �(h ! WW (⇤))

�SM(h ! WW (⇤))

�SM(h ! ZZ(⇤))

�(h ! ZZ(⇤))
, (47)

is constrained by

�2
WZ � 1 ' s2✓W [0.9cW � 2.6cB + 3HW � 3.9HB]

' 0.6�gZ1 � 0.5�� � 1.6Z� 2 [�6, 8]⇥ 10�2 , (48)

where the numerical values of the first line have been taken from [5]. We see that Eq. (48)

puts a bound on �WZ much stronger than the present direct experimental limit given by [27] 5:

(�WZ � 1) 2 [�0.5, 0.1].

Along the lines presented here we could also study the corrections from Wilson coe�cients

to the Higgs production modes f̄f ! V h and V V ! h that we could similarly show that are

constrained by our previous analysis.

4 CP-odd operators

For completeness, we show here how CP-odd operators enter in TGC and in the process

h ! V f̄f , and how they can be related. These operators are 6

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ ,

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (49)

O3fW =
1

3!
g✏abcW

a ⌫
µ W b

⌫⇢
fW c ⇢µ ,

5The experimental bound on �WZ is extracted not only using Eq. (47) but also considering custodial
breaking e↵ects in vector-boson fusion. The impact of these latter e↵ects is however negligible.

6A CP-odd operator involving 3 gluon field-strengths and the operators iyf |H|2f̄LHfR+h.c. complete the
list of CP-odd operators; since they do not enter in the observables discussed here, they have been omitted.
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where the numerical values of the first line have been taken from [5]. We see that Eq. (48)

puts a bound on �WZ much stronger than the present direct experimental limit given by [27] 5:

(�WZ � 1) 2 [�0.5, 0.1].

Along the lines presented here we could also study the corrections from Wilson coe�cients

to the Higgs production modes f̄f ! V h and V V ! h that we could similarly show that are

constrained by our previous analysis.

4 CP-odd operators

For completeness, we show here how CP-odd operators enter in TGC and in the process

h ! V f̄f , and how they can be related. These operators are 6

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA
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eGAµ⌫ ,

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (49)

O3fW =
1
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µ W b
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fW c ⇢µ ,

5The experimental bound on �WZ is extracted not only using Eq. (47) but also considering custodial
breaking e↵ects in vector-boson fusion. The impact of these latter e↵ects is however negligible.

6A CP-odd operator involving 3 gluon field-strengths and the operators iyf |H|2f̄LHfR+h.c. complete the
list of CP-odd operators; since they do not enter in the observables discussed here, they have been omitted.
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-process pp ! qqV ! qqh.

processes. The most relevant ones are the Higgs decays h ! V ff , the V h-associated production and
the VBF-process pp ! qqV ! qqh. All of them arise from the hV ff amplitude (see Fig. 4) given by
(neglecting fermion masses)

MhVff (q, p) =
1

v
✏⇤µ(q) J⌫

V (p)
⇥
AV ⌘µ⌫ + BV

(p · q ⌘µ⌫ � pµ q⌫) + CV ✏µ⌫⇢�p⇢q�
⇤

, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
V = Jµ

N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined

AV
= aV + baV

m2
V

p2 � m2
V

, BV
= bV

1

p2 � m2
V

+

bbV 1

p2
, CV

= cV
1

p2 � m2
V

+ bcV 1

p2
, (40)

with bbW ,bcW = 0, and where

aZ = �ghZff + i�g̃hZff , aW = �ghWff 0 + i�g̃hWff 0 ,

baZ = 2gZff

✓
1 +

�ghV V + �ghZZ

gmW

◆
, baW = 2gWff 0

✓
1 +

�ghV V

gmW

◆
,

bZ = �4gZffZZ , bW = �2gWff 0WW ,

bbZ = �2eQf t✓W Z� ,

cZ = �4gZffeZZ , cW = �2gWff 0eWW ,

bcZ = �2eQf t✓W eZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [30].
The most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3) is, as we
will discuss below, by measuring them at the LHC high-energy regime, for example in the V h-associated
Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2, 3], and at present there is no sign of being different from zero; from the experimental data
we have �0.35 < �WZ � 1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15) to be [16]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 1.6Z� . (42)

where we have used Eqs. (18)-(19), neglecting �� and �gZ,Wff since their constraints are 10

�2 � 10

�3.
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in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-like process pp ! qqV/qqV V ⇤ ! qqh.

distributions in Higgs processes. The most relevant ones are the Higgs decays h ! V ff , the V h-
associated production and the VBF-like process pp ! qqV/qqV V ⇤ ! qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)

MhVff (q, p) =
1

v
✏⇤µ(q) J⌫

V (p)
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AV ⌘µ⌫ + BV
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, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
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N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined
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with bbW ,bcW = 0, and where

aZ = �ghZff + i�g̃hZff , aW = �ghWff 0 + i�g̃hWff 0 ,
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bbZ = �2eQfZ� ,

cZ = �2gZffeZZ , cW = �2gWff 0eWW ,

bcZ = �2eQfeZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 0.7Z� , (42)
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distributions in Higgs processes. The most relevant ones are the Higgs decays h ! V ff , the V h-
associated production and the VBF-like process pp ! qqV/qqV V ⇤ ! qqh. All of them arise from the
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From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]
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processes. The most relevant ones are the Higgs decays h ! V ff , the V h-associated production and
the VBF-process pp ! qqV ! qqh. All of them arise from the hV ff amplitude (see Fig. 4) given by
(neglecting fermion masses)
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From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [30].
The most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3) is, as we
will discuss below, by measuring them at the LHC high-energy regime, for example in the V h-associated
Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2, 3], and at present there is no sign of being different from zero; from the experimental data
we have �0.35 < �WZ � 1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15) to be [16]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 1.6Z� . (42)

where we have used Eqs. (18)-(19), neglecting �� and �gZ,Wff since their constraints are 10

�2 � 10

�3.
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h ! V ff , in V h-associated production or
in the VBF-like process pp ! qqV/qqV V ⇤ ! qqh.

distributions in Higgs processes. The most relevant ones are the Higgs decays h ! V ff , the V h-
associated production and the VBF-like process pp ! qqV/qqV V ⇤ ! qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)

MhVff (q, p) =
1

v
✏⇤µ(q) J⌫

V (p)
⇥
AV ⌘µ⌫ + BV

(p · q ⌘µ⌫ � pµ q⌫) + CV ✏µ⌫⇢�p⇢q�
⇤

, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in Jµ
V = Jµ

N , Jµ
C for

V = Z, W , and ✏µ is the polarization 4-vector of V . We have defined

AV
= aV + baV

m2
V

p2 � m2
V

, BV
= bV
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p2 � m2
V
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bbV 1

p2
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p2 � m2
V

+ bcV 1

p2
, (40)

with bbW ,bcW = 0, and where
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baZ = 2gZff
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1 +

�ghV V + �ghZZ

gmW

◆
, baW = 2gWff 0

✓
1 +

�ghV V

gmW

◆
,

bZ = �2gZffZZ , bW = �2gWff 0WW ,

bbZ = �2eQfZ� ,

cZ = �2gZffeZZ , cW = �2gWff 0eWW ,

bcZ = �2eQfeZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 0.7Z� , (42)
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bcZ = �2eQfeZ� . (41)

From the differential distributions of the decay products in h ! V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
�WZ � 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have �0.35 < �WZ �1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

�2
WZ � 1 ' 0.6�gZ1 � 0.5�� � 0.7Z� , (42)
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 enhanced at high-energies = ideal for the LHC!



~  E2/Λ2

Example:   pp→Vh: 

(d
�
/
d
p
T
)/
�

pT (V )

cW = 0.16(⇤2/m2
W), cB = �0.09(⇤2/m2

W)
cW = cB = 0

(d
�
/
d
R

b
b
)/
�

�Rbb

cW = 0.16(⇤2/m2
W), cB = �0.09(⇤2/m2

W)
cW = cB = 0

Figure 1: To illustrate the UV behavior of the operators OV , these plots contrast the partonic
LO distributions of pT (V ) and �R(b, b) (pp ! ZH@8TeV) for the SM and SM+OV with large
Wilson coe�cients.

3 On the Validity of the EFT at Large Energy

The EFT of Eq. (1) is an expansion in derivatives and SM fields over powers of ⇤, defined
as the scale where resonant new physics e↵ects should become visible. Without additional
assumptions, the EFT cannot be expected to describe processes at energies higher than ⇤ as
operators of arbitrary dimension are then expected to become equally important, leading to a
breakdown of the EFT description. In a bottom-up approach (from an IR point of view), ⇤ is
not known a priori, but is a free parameter which needs to be fixed by experiment. The question
whether or not the energy at which an experiment is performed lies within the validity of the
EFT then depends on the sensitivity of the experiment itself. For instance, LEP1, working at
c.o.m. energy

p
ŝ = mZ , put bounds ⇤ & 1.6 TeV for operators like the combination OW +OB.

The sensitivity of the measurement hence fully justifies the EFT expansion in E/⇤, making the
procedure self-consistent. As we will see, at least for the Higgs production data available from
the 7 TeV and 8 TeV LHC runs, the situation is less clear.

Dimension-6 operators including more derivatives with respect to an existing dimension-4
interaction (class 2 in the classification of Eq. (2)) are expected to contribute an extra factor of
p2 ⇠ ŝ to the amplitude compared to the SM, and hence

�

�SM
⇠ (1 + ci2

ŝ

⇤2
)2 (8)

(in reality, this somewhat simplistic view will be complicated by helicity e↵ects). For ci2 ⇠ O(1),
the points at which SM amplitudes are overtaken by EFT e↵ects would typically mark the
breakdown of the expansion in E/⇤. This is indeed the case for the operators in which we
are interested. This is illustrated in Fig. 3, where we show the ud ! hW+ cross section in
the presence of OW at fixed center-of-mass energies

p
ŝ = 400, 500, 1200, and compare the first

(linear) term of �/�SM in the cWE2/⇤2 expansion with the complete expression. As expected,

modifications of the Higgs branching ratios and wave-function normalization: we will comment on this in section 4.
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by SU(2)L

bounds must be combined!



What BSMs can we probe here?

BSMs where fermions and Higgs belong to a strong sector at ~TeV

h

G

“strong” coupling

strong
dynamics

strong-coupling at E~Λ 
(as in pion-pion scattering)

⇠ g2⇤
E2

⇤2

����
E!⇤

! g2⇤ . 16⇡2

Consistent picture:  the strong sector can have accidental symmetries 
that do not allow for SM couplings,  e.g.,  H➞H+c & flavor sym.
➥ interactions arise from higher-dimensional operators

Small breaking of these symmetries could generate the SM couplings
(Yukawa & Higgs potential) 
➥ SM fermions and Higgs appear “accidentally” weakly-coupled 

    at low-energies

It can dominate over the SM! 

q

q



New Couplings at High-E
Disadvantage of LHC: Small sensitivity (w.r.t. SM)!
Advantage of LHC: High Energy

� ⇠ O(1)

In some cases high-E can open the door to new (strong) couplings

LEP

LHC
∼E2

mW Λ
E

gSM2

g*2
g(E)

+
1

E2

gSM gSM

g2⇤
M2

g⇤ g⇤1

E2 �M2

Exemple:

E
⌧
M

g2(E)=g2⇤
E2

M2

2 ! 2Amplitude for           scattering

can be ≳1ANP /ASM

A = g2SM

✓
1 +

g2(E)

g2SM

◆

To probe this type of scenarios we must scatter fermions and Higgs 
at high-energies:

However, not clear that Higgs physics is the best place to look, 
as we also expect:

strong
dynamics

q

q q
☛ dijets

2➞2 scattering strength:

q



● At the end of the LEP era, the precise measurements of Z couplings 
   led to strong constraints on BSM  
                    ➧ mainly characterized by the S & T parameters

● At the LHC, Higgs couplings afford new and even more interesting 
   probes of BSMs, mainly the primary Higgs-couplings

Conclusions

At present, Higgs physics plays already an important role  
in BSM destruction

Highest motivation to measure these couplings better and better

● Beyond them, the LHC high-energy regime affords new probes
   for new (more exotic) BSM in Vh (and VV) associated production


