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Dominant production mode at the LHC

• We want to know the gluon-fusion cross section precisely!



µATLAS = 1.18+0.15
�0.14

µCMS = 1.00± 0.14

stat. = +0.10
�0.10

sys. (inc. theo.) =

+0.11
�0.10

theory =

+0.08
�0.07

[M. Dührssen @ Moriond EW 2015]

Higgs production at the LHC



• Aim: Combine recent computation of N3LO cross section in the 
large mt limit with other known effects.

Higgs production at the LHC

➡ finite quark-mass effects.
➡ state-of-the-art PDFs.
➡ electroweak corrections.
➡ resummation of threshold logarithms.

• Assess residual uncertainty on the cross section at the LHC:
➡ Scale, PDF, aS.
➡ Truncation of threshold series.
➡ Missing  higher orders (N4LO and beyond).
➡ Missing N3LO PDFs.
➡ Scheme for quark masses + parametric uncertainties.



Outline

• The N3LO cross section in the large mt limit:

➡ Convergence of the threshold expansion.
➡ Scale variation.
➡ Effects beyond N4LO.

• PDF uncertaintites.

• Other corrections:

• Final prediction for the cross section

➡ Quark mass effects.
➡ Electroweak corrections.



The N3LO cross section 
in the large mt limit

Scale variation 
& 

higher orders in QCD



The large mt limit

L = LQCD,5 �
1
4v

C1 H Ga
µ⌫ Gµ⌫

a

mt ! 1• In the limit               , the Higgs boson couples directly to gluons: 

• In this limit, the cross section is known
➡ at NLO.
➡ at NNLO.
➡ at N3LO.
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• The N3LO cross section is only known as an expansion around 
threshold:
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• We estimate the uncertainty from the truncation of the series as:

Truncation uncertainty

Conservative 
factor

correction to the cross-section by

�(3)
EFT

���
expansion

� �(3)
EFT

���
full logs

= 0.006 pb , (3.9)

i.e., we observe that the di↵erence between using exact expressions or power series truncated

through O(z̄30) for the coe�cients with m � 1 in eq. (3.5) changes the cross section at the

sub-permille level, and it is thus completely negligible.

To summarise, we have investigated the convergence of the threshold expansion at

N3LO using two di↵erent methods. Both methods confirm our expectation that the thresh-

old expansion provides a very good approximation to the exact result. The result of our

analysis can be quantified by assigning a (conservative) uncertainty estimate to the trun-

cation of the threshold expansion. We assign an uncertainty due to the truncation of the

threshold expansion which is as large as

5⇥ �(3)
EFT (30)� �(3)

EFT (20)

�N3LO
EFT

= 0.25% . (3.10)

The factor 5 is a conservative estimator of the progression of the series beyond the first

30, respectively 37, terms. Note that the complete N3LO cross section appears in the

denominator of eq. (3.10), i.e., the uncertainty applies to the complete N3LO result, not

just the coe�cient of a5s.

3.3 Scale variation in the infinite top-mass limit

Having established that the threshold expansion provides a reliable estimate of the N3LO

cross section, we proceed to study the dependence of the cross-section on the renormaliza-

tion and factorization scales µR and µF .

In Fig. 4 we fix the factorisation scale to µF = mH/2 and vary the renormalization

scale. We observe that the perturbative series in the strong coupling converges faster for

small values of the renormalization scale. It is well known that the scale variation is very

large at LO and NLO, and it is still significant at NNLO. To emphasize this point, we

indicate in Fig. 4 by horizontal lines the range of predictions for the cross-section at each

perturbative order when µR varies in the interval [mH
4 ,mH ]. This interval seems to capture

the characteristic physical scales of the process, as indicated by the convergence pattern of

the series. We quantify the renormalization scale variation by looking at the spread around

the average value of the cross-section in this interval3, i.e., we define

�scale
EFT,k = ±�max

EFT,k � �min
EFT,k

�max
EFT,k + �min

EFT,k

100% , (3.11)

with

�max
EFT,k = max

µR2[mH/4,mH ]
�NkLO
EFT (µR) , (3.12)

and similarly for �min
EFT,k. We find

3not with respect to the central scale µR = mH
2

– 11 –
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Figure 3: The dependence of the cross-section on the renormalization scale for a fixed value of the
factorization scale.

Besides studying the n-dependence of the truncated power series, we have another way

to assess the convergence of the expansion. In ref. [80] it was shown that the knowledge of

the single-emission contributions at N3LO [72, 73, 61, 60] and the three-loop splitting func-

tions [55, 56] is su�cient to determine the coe�cients ⌘(3,m)
ij in the N3LO cross-section (3.5)
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• The threshold expansion gives a reliable result for the N3LO 
cross section!
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carefully analyse the residual uncertainty associated to all of these contributions. In this

way we obtain the most precise theoretical prediction for the Higgs production cross section

available to date.

We conclude this section by summarizing, for later convenience, the default numerical

values of the input parameters used in our numerical studies, as well as concrete choices

for PDFs and quark mass schemes. In particular, we investigate three di↵erent setups,

which are summarized in Tab. 1–3. Note that we use NNLO PDFs even when we refer

to lower order terms of the cross section, unless stated otherwise. The values for the

quark masses used are in accordance with the recommendations of the Higgs Cross Section

Working Group [82], wherein the top quark mass was selected to facilitate comparisons

with existing experimental analyses at LHC, Run 11.

Table 1: Setup 1

p
S 13TeV

mh 125GeV
PDF PDF4LHC15 nnlo 100

as(mZ) 0.118
mt(mt) 162.7 (MS)
mb(mb) 4.18 (MS)

mc(3GeV ) 0.986 (MS)
µ = µR = µF 62.5 (= mh/2)

Table 2: Setup 2

p
S 13TeV

mh 125GeV
PDF PDF4LHC15 nnlo 100

as(mZ) 0.118
mt 172.5 (OS)
mb 4.92 (OS)
mc 1.67 (OS)

µ = µR = µF 62.5 (= mh/2)

Table 3: Setup 3

p
S 13TeV

mh 125GeV
PDF abm12lhc 5 nnlo

as(mZ) 0.113
mt(mt) 162.7 (MS)
mb(mb) 4.18 (MS)

mc(3GeV ) 0.986 (MS)
µ = µR = µF 62.5 (= mh/2)

3. The cross-section through N3LO in the infinite top-quark limit

3.1 The partonic cross section at N3LO in the heavy-top limit

In this section we discuss the contribution �̂ij,EFT in eq. (2.4) from the e↵ective theory

where the top quark is infinitely heavy. This contribution can be expanded into a pertur-

bative series in the strong coupling constant,

�̂ij,EFT

z
=

⇡ |C|2
8V

1X

n=0

⌘(n)ij (z) ans , (3.1)

where V ⌘ N2
c � 1 is the number of adjoint SU(Nc) colours, as ⌘ ↵s/⇡ denotes the strong

coupling constant evaluated at a scale µ and C is the Wilson coe�cient introduced in

eq. (2.5), which admits itself a perturbative expansion in the strong coupling [17, 18, 19],

C = a2s

1X

n=0

Cn a
n
s . (3.2)

Here both the coe�cients Cn and the strong coupling are functions of a common scale µ.

At LO in as only the gluon-gluon initial state contributes, and we have

⌘(0)ij (z) = �ig �jg �(1� z) . (3.3)

1Note that the current world average mOS
t = 173.2 is within the recommended uncertainty of 1GeV

from the proposed mOS
t = 172.5 that we use here.

– 6 –
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Scale variation
• Scale variation at N3LO almost entirely due to renormalisation 

scale.

• Scale uncertainty                             per order:µ 2 [mH/4,mH ]

Figure 4: The dependence of the cross-section on the factorization scale for a fixed value of the
renormalization scale.

small values of the renormalization scale. It is well known that the scale variation is very

large at LO and NLO, and it is still significant at NNLO. To emphasize this point, we

indicate in Fig. 3 by horizontal lines the range of predictions for the cross-section at each

perturbative order when µR varies in the interval [mH
4 ,mH ]. This interval seems to capture

the characteristic physical scales of the process, as indicated by the convergence pattern of

the series. We quantify the renormalization scale variation by looking at the spread around

the average value of the cross-section in this interval3, i.e., we define

�scale
EFT,k = ±�max

EFT,k � �min
EFT,k

�max
EFT,k + �min

EFT,k

100% , (3.11)

with

�max
EFT,k = max

µR2[mH/4,mH ]
�NkLO
EFT (µR) , (3.12)

and similarly for �min
EFT,k. We find

�scale
EFT,k

LO (k = 0) ±22.0%

NLO (k = 1) ±19.2%

NNLO (k = 2) ±9.5%

N3LO (k = 3) ±1.9%

Before we move on to study the dependence of the cross section on the factorisation scale,

we note that we evolve the strong coupling ↵s(µR) at N3LO, and we use and NNLO parton

densities at all perturbative orders. The scale variation di↵ers quantitatively from the

above table and the convergence of the perturbative series is faster than what is displayed

in Fig. 3 if one uses LO or NLO PDFs and ↵s evolution at the corresponding orders.

Let us now turn to the study of the factorisation scale dependence of the N3LO cross

section. In Fig. 4 we fix the renormalisation scale to µR = mH
2 and we vary the factorization

scale. We observe that at all pertubative orders the variation of the factorization scale is

much smaller than the corresponding variation of the renormalization scale. At N3LO, the

factorization scale dependence is practically constant over a wide range of values of µF .

A comment is in order concerning the self-consistency of the factorization scale varia-

tion at N3LO. Traditionally, in a LO computation of a hadronic cross-section the parton-

densities are not taken to be constant, but they are evolved with the one-loop Altarelli-

Parisi splitting functions P (0). Similarly, at NLO and NNLO the P (1) and P (2) corrections

to the splitting functions are included. Following this approach, one would be compelled

to include the yet unknown P (3) corrections to the splitting function in the evolution of

3not with respect to the central scale µR = mH
2

– 11 –
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• Important question: Is scale variation a reliable estimator of 
missing higher-order corrections?

➡ We know that it is not at low orders!



Missing higher orders

• We estimate the effect of missing higher orders in different ways.

➡ Factorisation of the Wilson coefficient.
➡ Threshold resummation in Mellin space (using different 

prescriptions).
➡ Threshold resummation in SCET (including      resummation). ⇡2
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Quark-mass effects
• At LO and NLO, we know the exact result including all quark 

mass effects.
➡ EFT works well if rescaled by the LO ratio.

➡ Scale uncertainty in rescaled EFT is 1.6% (vs. 1.9% in EFT).

where H is the Higgs boson field, Ga
µ⌫ is the gluon field strength tensor and LSM,5 denotes

the SM Lagrangian with Nf = 5 massless quark flavours. C is the Wilson coe�cient

obtained by matching the e↵ective theory to the full SM in the limit where the top quark

is infinitely heavy. QCD corrections to the production cross section �̂ij,EFT in the heavy-

top limit have been computed at NLO [] and NNLO []. Recently also the N3LO corrections

have become available []. One of the main goals of this work is to combine the N3LO

corrections in the large-mt limit with other e↵ects that can provide corrections at a similar

level of accuracy, in particular finite quark-mass e↵ects and electroweak corrections. We

also investigate the impact of the resummation of threshold logarithms up to next-to-next-

to-next-to-leading logarithmic accuracy (N3LL).

While the production cross section is known to high accuracy in the framework of

heavy-quark e↵ective theory, reaching a similar level of accuracy when including finite-

quark mass e↵ects (also from bottom and charm quarks) is currently beyond our technical

capabilities. Nonetheless, various quarks-mass e↵ects have been computed, which we con-

sistently include into our prediction (2.4). First, it was already observed at LO and NLO []

that the validity of the e↵ective theory can be greatly enhanced by rescaling the e↵ective

theory with the exact LO result. We therefore rescale the cross section �̂ij,EFT in the

e↵ective theory by the ratio

RLO ⌘ �LO
ex;t

�LO
EFT

, (2.6)

where �LO
ex;t denotes the exact (hadronic) LO cross section in the SM with a massive top

quark and Nf = 5 massless quarks. Moreover, at LO and NLO we know the exact result

for the production cross section in the SM, including all mass e↵ects from top, bottom and

charm quarks. We include these corrections into our prediction via the terms ��̂(N)LO
ij,ex;t,b,c

in eq. (2.4), consistently matched to the contributions from the e↵ective theory to avoid

double counting. As a consequence, eq. (2.4) agrees with the exact SM cross section (with

massless u, d and s quarks) through NLO in QCD. Beyond NLO, we only know the value

of the cross section in the heavy-top e↵ective theory. We can however include subleading

corrections at NNLO in the e↵ective theory as an expansion in the inverse top-mass [].

These e↵ects are taken into account through the term �t�̂NNLO
ij,EFT in eq. (2.4), rescaled by

RLO.

Finally, we also include electroweak corrections to the gluon fusion cross section through

the term �̂ij,EW in eq. (2.4). Unlike QCD corrections, electroweak corrections have only

been computed through NLO in the electromagnetic coupling constant ↵ []. Moreover,

mixed QCD-electroweak corrections, i.e., corrections proportional to ↵↵3
s, are known in an

e↵ective theory [], valid in the limit where not only the top quark but also the electroweak

bosons are much heavier than the Higgs boson. In this limit the interaction of the Higgs

boson with the W and Z bosons is described via a point-like vertex coupling the gluons

to the Higgs boson. Higher-order corrections in this limit can thus be included into the

Wilson coe�cient in front of the dimension-five operator in eq. (2.5).

In the remainder of this paper we give a detailed account of all the ingredients that

enter our best prediction for the inclusive gluon-fusion cross section. In addition, we
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of large perturbative corrections to the Higgs boson cross section, and hence on its own

this procedure of predicting higher orders does not provide reliable estimates of the missing

dominant corrections.

5. Quark-mass e↵ects and electroweak corrections

5.1 Quark mass e↵ects

5.1.1 Finite quark-mass e↵ects through NNLO

So far we have only considered QCD corrections to the e↵ective theory where the top quark

is infinitely heavy. In this section we discuss e↵ects that are not captured by the e↵ective

theory, but that can still give rise to sizeable e↵ects. In particular, we discuss the e↵ects

of including quark-mass e↵ects from top, bottom and charm quarks, to the extend these

corrections are available in the literature, and we comment on some missing e↵ects which

lead to sizeable uncertainties on the cross section.

We start by discussing the e↵ect of quark masses at LO and NLO, where it is possible

to obtain exact results including all quark mass e↵ects. Already at LO cross section changes

by +6.2% compared to the result in the e↵ective theory if the exact top-mass dependence

is taken into account. The exact mass dependence is also known at NLO [6, 5, 7, 8, 11,

40, 9, 10, 12], and we can thus take into account exactly all e↵ects from top, bottom and

charm quarks up to that order. The cross section through NLO as we add quark e↵ects

(for the parameters of setup 1; see Tab. 1) is summarized in Tab. 5.

Table 5: QCD e↵ects for the parameters of setup 1

�LO
EFT 15.05 �NLO

EFT 34.66

RLO �LO
EFT 16.00 RLO �NLO

EFT 36.84

�LO
ex.;t 16.00 �NLO

ex;t 36.60

�LO
ex.;t+b 14.94 �NLO

ex;t+b 34.96

�LO
ex.;t+b+c 14.83 �NLO

ex;t+b+c 34.77

Beyond NLO finite quark-mass e↵ects are in general unknown and can thus not be

included exactly. It has been observed, however, that the exact NLO cross section is well

approximated by rescaling the e↵ective NLO cross section by the leading-order ratio RLO

defined in eq. (2.6). For example, within Setup 1 RLO = 1.062, and we see from Tab. 5

that the rescaled NLO cross section in the e↵ective theory, RLO �NLO
EFT , reproduces the

NLO cross section �NLO
ex;t with full top-mass dependence within 0.6%. Motivated by this

observation, it has become customary to multiply the e↵ective field theory cross-section at

NNLO by RLO, and we follow this prescription also for the N3LO coe�cient.

In ref. [20, 95, 96, 21] top-mass corrections at NNLO were computed as an expansion in

mH/mt after factorising the exact LO cross section. We include these corrections into our

prediction via the term �t�̂NNLO
ij,EFT in eq. (2.4). In particular, we include the contribution

from the sub-leading 1/mt for the numerically significant gg and qg channels [96]. The

gg channel contributes ⇠ 1.2% ontop of the rescaled NNLO cross section in the limit
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Quark-mass effects
• At LO and NLO, we know the exact result including all quark 

mass effects.
➡ EFT works well if rescaled by the LO ratio.

• At NNLO, we do not know any quark mass effects exactly. 
➡ Scale uncertainty in rescaled EFT is 1.6% (vs. 1.9% in EFT).
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➡ We do not know t-b interference at NNLO.
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�NLO
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Electroweak corrections
• Exact NLO EW corrections are known. [Actis, Passarino, Sturm, Uccirati]

• Mixed EW-QCD corrections are only known as an EFT where 
the weak bosons are integrated out. [Anastasiou, Boughezal, Petriello]



Electroweak corrections
• Exact NLO EW corrections are known. [Actis, Passarino, Sturm, Uccirati]

• Mixed EW-QCD corrections are only known as an EFT where 
the weak bosons are integrated out.

Table 6: Dependence on the renormalization scheme for the quark masses, setup 1 vs. setup 2

MS OS

�LO
ex;t+b+c 14.90[1] �LO

ex;t+b+c 16.12[1]

�NLO
ex;t 36.76[1] �NLO

ex;t 36.80[1]

�NLO
ex;t+b 35.09[1] �NLO

ex;t+b 34.63[1]

�NLO
ex;t+b+c 34.91[1] �NLO

ex;t+b+c 34.15 [1]

dependence of the EFT on the top quark mass is, as observed above, extremely mild, we

will focus on the exact QCD corrections, including the light quarks. The range of variation

is the one recommended by the internal note of the HXSWG [], which either conforms to

the PDG recommendation or is more conservative than that.

Table 7: Top quark

�mt = 1GeV �NLO
ex;t+b+c 34.91[1]

mt + �mt �NLO
ex;t+b+c 34.85[1]

mt � �mt �NLO
ex;t+b+c 34.93[1]

Table 8: Bottom quark

�mb = 0.03GeV �NLO
ex;t+b+c 34.91[1]

mb + �mb �NLO
ex;t+b+c 34.89[1]

mb � �mb �NLO
ex;t+b+c 34.92[1]

Table 9: Charm quark

�mc = 0.026 �NLO
ex;t+b+c 34.91[1]

mc + �mc �NLO
ex;t+b+c 34.90[1]

mc � �mc �NLO
ex;t+b+c 34.91[1]

We see clearly that the parametric uncertainties are entirely negligible, at the level of

0.17% or below. Even if we tripled the top quark mass uncertainty to 3GeV, the parametric

uncertainty on the NLO cross section would still be below 0.35%. One might worry that the

rescaling coe�cient defined in section 5.1 also depends on the top mass value, but in this

case too the parametric uncertainty doesn’t exceed 0.1%, and even with 3GeV variation

on the top mass, the e↵ect is still below 0.2%.

5.4 Electroweak corrections

The electroweak corrections to the LO gluon fusion cross-section have been computed in

[41]. For mh = 125GeV they amount to 5.2% of the LO cross section. The electroweak

corrections to the NLO gluon fusion cross-section, also known as mixed QCD-EW correc-

tions, are at present unknown. The contribution from light quarks, which at O(aewa2s)

is the dominant one accounting for 80% of the total EW corrections at that order), was

computed at [43], within an e↵ective field theory approach where the W,Z bosons are

integrated out. The corresponding Wilson coe�cient modifies the QCD Wilson coe�cient

CQCD ! CQCD + �EW (1 + C1was + C2wa
2
s + . . .) (5.3)

with

C1w =
7

6
(5.4)

The numerical e↵ect of such a correction is very similar to that of the approached termed

as ‘complete factorization’ in [41], bringing the EW contributions to the level of 5.1% of

the NLO cross section. Adopting the modification of the Wilson coe�cient also for higher

– 28 –

➡ Modified Wilson coefficient.

NLO EW EW-QCD in EFT approach

[Anastasiou, Boughezal, Petriello]
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corrections, ~5.1%.

[Anastasiou, Boughezal, Petriello]



Electroweak corrections
• Exact NLO EW corrections are known. [Actis, Passarino, Sturm, Uccirati]

• Mixed EW-QCD corrections are only known as an EFT where 
the weak bosons are integrated out.

Table 6: Dependence on the renormalization scheme for the quark masses, setup 1 vs. setup 2

MS OS

�LO
ex;t+b+c 14.90[1] �LO

ex;t+b+c 16.12[1]

�NLO
ex;t 36.76[1] �NLO

ex;t 36.80[1]

�NLO
ex;t+b 35.09[1] �NLO

ex;t+b 34.63[1]

�NLO
ex;t+b+c 34.91[1] �NLO

ex;t+b+c 34.15 [1]

dependence of the EFT on the top quark mass is, as observed above, extremely mild, we

will focus on the exact QCD corrections, including the light quarks. The range of variation

is the one recommended by the internal note of the HXSWG [], which either conforms to

the PDG recommendation or is more conservative than that.

Table 7: Top quark

�mt = 1GeV �NLO
ex;t+b+c 34.91[1]

mt + �mt �NLO
ex;t+b+c 34.85[1]

mt � �mt �NLO
ex;t+b+c 34.93[1]

Table 8: Bottom quark

�mb = 0.03GeV �NLO
ex;t+b+c 34.91[1]

mb + �mb �NLO
ex;t+b+c 34.89[1]

mb � �mb �NLO
ex;t+b+c 34.92[1]

Table 9: Charm quark

�mc = 0.026 �NLO
ex;t+b+c 34.91[1]

mc + �mc �NLO
ex;t+b+c 34.90[1]

mc � �mc �NLO
ex;t+b+c 34.91[1]

We see clearly that the parametric uncertainties are entirely negligible, at the level of

0.17% or below. Even if we tripled the top quark mass uncertainty to 3GeV, the parametric

uncertainty on the NLO cross section would still be below 0.35%. One might worry that the

rescaling coe�cient defined in section 5.1 also depends on the top mass value, but in this

case too the parametric uncertainty doesn’t exceed 0.1%, and even with 3GeV variation

on the top mass, the e↵ect is still below 0.2%.

5.4 Electroweak corrections

The electroweak corrections to the LO gluon fusion cross-section have been computed in

[41]. For mh = 125GeV they amount to 5.2% of the LO cross section. The electroweak

corrections to the NLO gluon fusion cross-section, also known as mixed QCD-EW correc-

tions, are at present unknown. The contribution from light quarks, which at O(aewa2s)

is the dominant one accounting for 80% of the total EW corrections at that order), was

computed at [43], within an e↵ective field theory approach where the W,Z bosons are

integrated out. The corresponding Wilson coe�cient modifies the QCD Wilson coe�cient

CQCD ! CQCD + �EW (1 + C1was + C2wa
2
s + . . .) (5.3)

with

C1w =
7

6
(5.4)

The numerical e↵ect of such a correction is very similar to that of the approached termed

as ‘complete factorization’ in [41], bringing the EW contributions to the level of 5.1% of

the NLO cross section. Adopting the modification of the Wilson coe�cient also for higher

– 28 –

➡ Modified Wilson coefficient.

NLO EW EW-QCD in EFT approach

➡ Numerical impact is similar to ‘complete factorisation’ for EW 
corrections, ~5.1%.

[Anastasiou, Boughezal, Petriello]

• We estimate the uncertainty of this approach by varying the 
mixed QCD-EW Wilson coefficient,

orders in as leads to a total correction of 5.0%, independent of the value of the coe�cient

C2w to below per mille level for non-apocalyptic values of C2w.

The above arguments are not, however, entirely satisfactory, because the computation

of the EW Wilson coe�cient, described above, assumes the validity of the mH/mV expan-

sion, while clearly mh > mV . One might argue that in the region far from the relevant

mh/mZ threshold, the threshold e↵ects are minor and can be neglected for the phenomeno-

logical purposes of this paper. In order to quantify the induced uncertainty we choose to

vary the value of the coe�cient C1w away from its computed value of 7/6, by a factor of

3, see fig 12:

�EW (1 + C1was + . . .) ! �EW (1 + y� · C1was + . . .) (5.5)

The related uncertainty is of the order of �0.2% to +0.4%. Note that the result one

obtains by assuming complete factorization (marked by ‘CF’ in fig. 12) lies in the middle

of the variation range, slightly higher than the y� = 1 prediction.

achilleas_plots/ew_corrections_study.pdf

Figure 12: Relative EW corrections as a function of a modified EW Wilson coe�cient:
C1w ! y� ·C1w. Within the range y 2 [1/3, 3] the EW corrections are modified by �0.2% to +0.4%.
The EW correction under the assumption of complete factorization (CF) lies in the middle of the
variation range.
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➡ Cross section varies by +0.4% / -0.2% if      is varied by a 
factor 3.

y�
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PDF + aS uncertainty
• We follow the PDF4LHC recommendation:

�PDF+↵s =
q

�2PDF + �2↵s

➡ PDF and      error are added in quadrature↵s

➡   aa    obtained by using Hessian method.�PDF

The variation range is, of course, largely arbitrary. It is worth noting, however, that

in order to reach ±1% uncertainty levels, one needs to enlarge the range to y� = [�3, 6],

which is to our eyes overly conservative.

6. PDF comparison

In the last few years significant progress has been made towards the improvement of the

PDF fits, also through the inclusion of new data from collider and fixed target experi-

ments. Comparison of the predictions from di↵erent sets in specific benchmark scenarios

have allowed a better understanding of the discrepancies that were previously observed,

and lead an improvement in the techniques employed by the PDF4LHC group for the

combination of these sets6 and the estimate of the final uncertainties. Furthermore, most

sets (CT14 [97], MMHT2014 [98] and NNPDF3.0 [99], as well as HERAPDF2.0 [100]) are

now provided at the same value of the strong coupling constant as the global PDF4LHC

fit [101], ↵s(m2
Z) = 0.118.

As a consequence, a much better agreement in the predictions for the Higgs production

cross section can be observed among these sets, both in the central value and in the remain-

ing pdf+↵s uncertainty. We compute this combined error following the recommendations

of the PDF4LHC working group [101],

�(pdf + ↵s) =
p
�(pdf)2 + �(↵s)2 . (6.1)

For all the sets, the ↵s uncertainty is calculated over the range given by the PDF4LHC

group,

↵s(m
2
Z) = 0.1180± 0.0015 , (6.2)

as

�(↵s) =
�(↵s = 0.1195)� �(↵s = 0.1165)

2
. (6.3)

In Fig. 13 we compare the 68% C.L. predictions from CT14, MMHT2014 and NNPDF3.0

with those from PDF4LHC. The predictions by the four sets lie well within a 1% of each

other through all the range of center of mass energy values from 2 to 15 TeV. In particular,

MMHT2014 and NNPDF3.0 agree at the per mille level. The combined pdf+↵s error

is at the level of 3 � 4% for all the values of LHC energies and well captures the small

discrepancies in the predictions among the di↵erent sets.

Good agreement with the PDF4LHC predictions is also obtained for LHC energies

using the HERAPDF2.0 set [100] (Fig. 14). HERAPDF2.0 does not enter the PDF4LHC

fit, but is given at the same central value for ↵s. However, these PDFs give a cross section

that is about 6% lower at Tevatron energies, and seems to increase above the PDF4LHC

predictions at higher center of mass energies.

The situation is very di↵erent for the ABM12 set [102], which adopts a central value

of the strong coupling constant

↵ABM
s = 0.1132± 0.0011 .

6CT14 [97], MMHT2014 [98] and NNPDF3.0 [99].
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�↵s

• We also studied other PDF sets (ABM, HERAPDF).

➡ At LHC energies, HERAPDF in good agreement with 
PDF4LHC, while ABM 7-9% lower.
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Missing N3LO PDFs
• All our predictions were made using NNLO PDFs.

NNLO with NNLO PDFs
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• From this, we estimate the uncertainty of using NNLO PDFs at 
N3LO

Missing N3LO PDFs
• Using NLO PDFs at NNLO results in a 2-2.5% error at NNLO.
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Figure 16: The perturbative expansion of the non-singlet structure function F2,ns up to three loops
(N3LO). On the left all curves are normalized to the leading-order result F LO

2,ns = qns given by
Eq. (5.2), on the right we show the relative effects of the two-loop and three-loop corrections.
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Figure 17: As Fig. 16, but for FL where the terms up to order αn+1
s form the NnLO approximation.

Also here the left plot is normalized to qns, facilitating a direct comparison with F2,ns.
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[Moch, Vermaseren, Vogt]

±1

2

�NNLO
NNLO PDF � �NNLO

NLO PDF

�NNLO
NLO PDF

�N3LO
NNLO PDF

' ±0.55 pb ' ±1.15%

• The factor 1/2 takes into account that this 
estimate is most likely overly conservative. 
➡ cf. convergence pattern of DIS.



Summary

48.48
±0.90pb ±1.26pb 

pb
         pb ±0.12 

pb
±0.56 

pb
±0.48 

pb
±0.34 

pb
±0.48 

pb±1.86% ±2.60%         % ±0.25% ±1.15% ±1.00% ±0.70% ±1.00%

�[pb] �PDF �↵s �scale �trunc �PDF-TH �EW �tb �1/mt

+0.09
�1.11

+0.2
�2.3

• Scale choice

•          and     are computed using the PDF4LHC recommendation.

• We have also considered parametric uncertainties on quark 
masses, and change of renormalisation scheme.

µF = µR 2 [mH/4,mH ]

�PDF �↵s

➡ Negligible.

• We do not include threshold resummation effects.
➡ Captured in N3LO scale variation.

• Combination of errors:
➡ PDF and aS in quadrature.
➡ the rest is added linearly.



Summary

• Most precise prediction of the Higgs cross section to date!

• Perturbative stability of the cross section under control.
➡ Scale variation gives a reliable estimate of higher-order QCD 

corrections.

• Places where we can improve:
➡ top-bottom interference at NNLO in QCD.
➡ N3LO PDFs.
➡ Exact mixed QCD-EW corrections.
➡ NNLO corrections including exact top-mass dependence.

� = 48.48 ± 1.55+2.07
�3.09 pb = 48.48 pb ± 3.19%+4.27%

�6.37%


