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Summary of last lecture – Instabilities I

 1. General Comment on Instabilities

 2. Negative Mass Instability

 3. Driving terms  (second cornerstone)

 4. A cavity-like object is excited

 5. Equivalent circuit

 6. Above and below resonance

 7. Laying the bricks in the wall (row 1)

 8. Laying the bricks in the wall (row 2)

 9. By analogy with the negative mass
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 1. A short cut to solving the instability

 2. An imaginative leap

 3. The effect of frequency shift

 4. Square root of a complex Z

 5. Contours of constant growth

 6. Landau damping

 7. Stability diagram

 8. Robinson instability

 9. Coupled bunch modes

 10    Microwave instability

Instabilities II
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A short cut to solving the instability

 From theory of synchrotron motion:

Recall the effect of a voltage of a cavity 

Assume the particles have initially a small 
phase excursion about s = 0

or

where

is the synchrotron frequency and     is the 
revolution frequency.
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An imaginative leap

 Put in the volts induced by the beam in the 
cavity instad of the volts imposed from 
outside

 i reflects the fact that, unlike the RF wave 
the volts induced by a resistive load cross 
zero 90 degrees after the passage of the 
particle

 This bypasses much analysis and gives the 
right formula for the frequency shift.
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See top of Schindl p.5

And equ 13 and 17
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The effect of frequency shift

Remember that a force driving an oscillator 
may be written on the right hand side:

Alternatively it can be assimilated into the 
frequency

where:

 if       is positive  and Z pure imaginary 
(reactive)            is real and there is just a 
change in frequency.

 if Z has a resistive component this gives an 
imaginary part to

 Imaginary frequencies can signal exponential 
growth 
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See Schindl Table 1
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Square root of a complex Z

 Be careful to first multiply Z by i and then 
take the square root

 There will be a locus in (X,Y) space where the 
imaginary part is constant which will be a 
contour of constant growth rate

 Suppose the solution to the differential 
equation is 

 We must solve for constant 

 Eliminate 
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Contours of constant growth

 Changing the growth 
rate parameter we 
have a set of parabolas

X  2 Y /   2
/  2

rise /1  :rategrowth 
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Landau damping – the idea

 Two oscillators excited together become 
incoherent and give zero centre of charge 
motion after a number of turns comparable 
to the reciprocal of their frequency difference
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Landau Damping – the maths

N particles (oscillators), each resonating at a 
frequency between 1 and 2  with a density g()

g()d  1
1

2



Response X of an individual oscillator 
with frequency  to an external 
excitation with 
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normalization
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inside the frequency 
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The integral has  a 
pole at 
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See Schindl p9 

for more about 

this 

integration
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Stability diagram

Keil Schnell stability criterion:
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Single Bunch + Resonator: “Robinson” 
Instability

A single bunch rotates 
in longitudinal phase 

plane with s: 

its phase  and energy 
E also vary with s

“Dipole” mode or 
“Rigid Bunch” mode

Bunch sees resonator impedance at r  0

Whenever E>0:

•  increases (below transition)
• sees larger real impedance R+

•more energy taken from beam

 STABILIZATION

Whenever E>0:

•  decreases (above transition)
• sees smaller real impedance R+

• less energy taken from beam

 INSTABILITY

<r

>r

UNSTABLE STABLE

see Schindl p 10
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Longitudinal Instabilities with Many Bunches

2
n

M
, 0  n  M1 M modes

 Fields induced in resonator remain long enough to 
influence subsequent bunches
 Assume M = 4 bunches performing synchrotron 
oscillations

 Four possible phase shifts between four bunches

M bunches: phase shift of coupled-bunch mode n:

Coupled-Bunch 
Modes n

More in Schindl  pp. 14-17



Lecture 13 - E. Wilson - 3/1/2016 - Slide 14

Longitudinal Microwave Instability

• High-frequency density 
modulation along the bunch
• wave length « bunch length
(frequencies 0.1-1 GHz)
• Fast growth rates – even leptons
concerned
• Generated by “BROAD-BAND”             
IMPEDANCE
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All elements in a ring 
are “lumped” into a 
low-Q resonator 
yielding the 
impedance
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“Impedance”  of a 
synchrotron in 

•This inductive impedance is caused mainly by 
discontinuities in the beam pipe 

• If high, the machine is prone to instabilities
• Typically 20…50  for old machines
• < 1 for modern synchrotrons

More in Schindl  pp. 16-18
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 1. A short cut to solving the instability

 2. An imaginative leap

 3. The effect of frequency shift

 4. Square root of a complex Z

 5. Contours of constant growth

 6. Landau damping

 7. Stability diagram

 8. Robinson instability

 9. Coupled bunch modes

 10    Microwave instability

Summary of Instabilities II


