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At the TLEP workshops no. 4 and 6 the different versions of the FCC-ee accelerator
have already been discussed in terms of SR spectra, flux, power and their linear and
surfacic densities (see bonus slides)
Vacuum-wise the most challenging is the Z-pole machine at 45.5 GeV, due to its
extremely large beam current, 1450 mA

Outgassing:
Under the assumption of a large bending radius and no lumped absorber (a-la LEP)
the specific outgassing rate Q(mbar - I/s/m) is related to the linear photon flux
F(ph/s/m) by the formula:

Q=n-F-k
where 1 is the photon-induced desorption (PID) rate (mol/ph) and k is a conversion
factor (mbar-l/mol), k=4.05E-20 (@ 20 °C).
The linear photon flux is: F = 8.08E+17 - E(GeV) - I(mA) / (2rp) , with p =9791.21 m;
for FCC-ee Z, F = 5.3E+22/ (2np) = 5.3E+22/ 6.16E+4 = 8.6E+17 (ph/s/m)
This leads to Q =1 - 8.6E+17 - 4.05E-20 = 1| - 3.48E-2 (mbar*|/s/m)
n varies over several orders of magnitude (~1E-2 = ~1E-7): it depends on the
material, cleaning procedures, surface finish, any eventual coatings, bake-out
temperature, and most of all it depends on the integrated photon dose (ph/m) at a
given location (determined by the geometry of the vacuum chamber and any photon
absorbers, accounting for photon scattering)
For a given/needed average pressure along the ring, dictated by machine-physics
issues, such as beam-gas scattering lifetime, beam-loss and related energy
deposition, e-cloud (for the e* beam), etc... it is therefore important to get as quickly
as possible a low n



This reduction can be obtained by collecting the photon flux on short discrete
absorbers (like done on most modern light sources), and installing near the absorbers
as much pumping speed as possible (compatibly with conductance limitations)

To improve things even further, NEG-coating would be beneficial, as it possesses an
intrinsically low PID yield (>2 orders of magnitude lower than un-coated surface)

NEG-coating would also be beneficial in reducing the e-cloud in the e* ring

Other possibility is given by TiN-coating, as employed on a large scale at KEK-B and
SuperKEKB as well, although TiN does not give a PID yield reduction, and therefore
needs to have some sort of effective pumping installed along with it. Same for a-
Carbon and the Laser-Engineered Surface Structures (LESS).

Pumping:

Lumped pumping (number of pumps depending on the conductance of the vacuum
chamber) can be prohibitively expensive for a 100 km-long machine

Distributed pumping can be implemented only via NEG-strips (like LEP did), as the
magnetic field of the dipoles is too weak for implementing distributed ion-pumps
(like the US B-Factory did for the high-energy ring, or CESR at Cornell)

Distributed pumping can also be obtained by applying NEG-coating (like in the LHC’s
LSSs)

The advantage of distributed pumping vs lumped pumping is that the former does
not depend on the conductance of the chamber, while the latter does

In-situ bake-out is highly recommended, and probably necessary in order to obtain
rapidly a low-Z residual gas composition. It is mandatory in case of NEG-coating.



Conceptual proposal:

Based on the considerations outlined above, a conceptual design has been proposed
which implements localized SR absorbers (to speed-up the conditioning time and
minimize photon scattering)

Another important feature of the localized absorbers is that they allow concentrating
the Compton-scattered flux (especially for the very-high energy machines), which
could constitute a potential source of activation in the tunnel and damage to the
magnet coils and any sensitive electronic equipment, in addition to the formation of
ozone and related corrosion (see L. Lari’s presentation at 6t" TLEP Workshop, and F.
Cerutti at FCC Kick-Off, Univ. Geneva)

The proposed cross-section of the vacuum chamber is elliptical, 90x30 mm? (HxV)

The material of choice is copper, 2 mm-thick (C. Garion, TE-VSC, has checked its
mechanical fitness under bake-out conditions: OK)

Aluminium could also be a choice, but it is much more transparent to penetrating
gamma rays, possibly requiring additional distributed shielding (like LEP). Aluminium
has also a higher PID as compared to copper, in case of non-NEG-coated chamber

The interconnecting space between dipoles and between dipoles and quadrupoles
has been used to install SR photon absorbers (with heavy shielding), bellows, BPMs,
pumping ports, flanges, connections for water cooling of the chambers/absorbers,
and the necessary anchoring fixed points, as schematized below:



FODO Cell = V16

(B.Harer, CERN)

Half-Cell Q

50 m

D = Dipole, L=10m
Q = Quadrupole, L=1.5m
S =Sextupole, L=0.5m

= Total number of dipoles: 2x 6152 &
Courtesy: B. Harer




TLEP cell layout

Dipole Quadrupole Sextupole
| )
Y

Half cell

Assumptions:

1 Absorber, 30~35 cm long, downstream of the
dipole

Dipole length: ~ 10 m

Quad length: ~ 1.5 m

Courtesy: C. Garion



Interconnection types and naming convention

|IC BB IC BQ IC QB

Assumptions:
Quadrupoles and sextupoles with the same chamber and on same girder (two halfs?)

Interconnection BB

Coils: 10 cm Flanges : 5 cm

/

Absorber: 30 cm bellows : 9 cm (65 + 2*12.5)
- ICBB: ~¥ 65 cm Courtesy: C. Garion



Interconnections BQ and QB (conceptual, dimensions subject to change)

Coils: 10 cm
Flanges : 5 cm Coils: 15 cm Coils: 5 cm

Coils: 5 cm Coils: 15 cm Flanges : 5 cm

Coils: 10 cm

/

Absorber: 30 cm

Pumping port
BPM: / valve: 15 cm

bellows : 5 cm (25 +2*12.5) 20 cm

bellows : 9 cm (65 + 2%12.5)

- ICBQ: ~55cm - ICBQ: ~ 65 cm _
Courtesy: C. Garion



Half cell (conceptual, dimensions subject to change)

15 cm

65 cm 55cm 65 cm

L_interconnection: 185 cm (coils extremities included)

Courtesy: C. Garion
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30 cm-long wedge-shaped absorbers (Cu or GlidCop); One placed inside each 10m-long

dipole, plus 1 in the 0.65m-long dipole-dipole IC and 1 in the IC BQ (or IC QB)

Distance between tip of absorber and beam axis is 24 mm
The photon flux of the Z-machine is >50 times higher than that of tt!



Photon ray-tracing: 175 Gev tt vs 45.5 GeV Z

* Flat absorber inclined only around a vertical axis is not sufficient: the power density
(W/mm?) is locally too high, would probably need GlidCop instead of OFH copper

/ /

* New conceptual’éesig/wélf the/ab/sorber(right): Introduce an additional inclination, to
spread the SR poweron a/bi’gger surface; V-shaped groove... 15.5 deg inclination (with
respect to orbit plane) 2 1/3.6 x peak power density

* Groove dimensions: 4 mm high, ~ 150 mm-long




Photon ray-tracing: 45.5 GeV Z
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* 35 cm-long wedge-shaped absorbers (Cu or GlidCop) with V-groove to reduce power density;
* Analysis of temperature distribution in case of vertical misalignment under way;




Pressure Profiles for Different Pumping/Material/Coating Choice

PH2 ( mbar )

FCC-ee Z: Comparison of Pressure Profiles Along 1x 50m-Long Cell
vs Chamber Material and/or SR Absorber Geometry
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Conclusions and to-do list:

A preliminary cost-analysis NEG-coating vs lumped pumping has been carried out, based on the
cost of LEP and the experience gained on the extensive NEG-coating of the LHC’s LSSs

Based on this, it is argued that NEG-coating is an economically attractive option w.r.t. the
lumped pumping one (no explicit cost estimate mentioned here)

A closer look at the sectorisation of the vacuum system should be given, especially in terms of
total electric power needed in the tunnel during bake-outs

R&D on bake-out heating systems capable of sustaining the high-radiation background near the
shielded absorbers needs to be carried out (removable jackets?)

Prototyping of the welding (brazing?) joint between Cu chamber and absorbers needs to be done

The extremely high vertical collimation of the SR power generated by the W and tt machines is
difficult to simulate experimentally: 1/y of the order of 3 prad, i.e. +/- 40 um SR fan projected at
26.5 m! (tt case), slightly diluted by the beam size and lattice functions

The calculated SR power density (W/mm?2) is a bit higher than that of the crotch absorbers of
existing light sources (ref. ESRF 3-Tesla wiggler absorber: peak power density ~ 210 W/cm?;
material GlidCop): need careful optimization of the geometry of the absorbers and their cooling
(high water flows with concomitant corrosion issues and neutron production) (collab. FLUKA
team)

Effect of the periodic arrangement of the protruding SR absorbers (and their shape) on the
geometric impedance budget is being carried out (collab. Univ. Rome)

Integration of conceptual design with cross-section of magnets
Booster: waiting for details about the magnets’ size and lattice

By Rome’s FCC Workshop, the FLUKA and geometric impedance analysis and results will be
integrated in this presentation
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The SR spectrum of TLEP-t and -h, are compared to the spectrum for LEP-2

BONUS SLIDES

Update on TLEP Vacuum Design

SR Spectra,Linear Power Densities

and that of the 6 GeV ESRF light source
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Update on TLEP Vacuum Design

. Conductances, Pressure Profiles

* 90x30 mm2 elliptical cross-section

Cooling water channel
(10~15 mm ID)

4 mm Alu (6060) or 2 mm Cu

Internal dimensions elliptical profile:
90x30 mm (HxV)

= A minimum thickness of 2 and 4 mm is
considered for copper and aluminium,

respectively.

Cross section

90

6th TLEP Workshop — CERN — 16-18 October 2013

AMPLITUDE
1.0
0.0

Deformed shape under vacuum (copp€

VAL - ISO

> 4.43E-03
< 9.60E-02
9.53E-02
9.10E-02
8.66E-02
8.22E-02
7.79E-02
7.35E-02
6.91E-02
6.48E-02
6.04E-02
5.61E-02
5.17E-02
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4.30E-02
3.86E-02
3.42E-02
2.99E-02
2.55E-02
2.12E-02
1.68E-02
1.24E-02
8.07E-03

Von Mises stress field under vacuum

>
<

VONMISES
3.97E-01
8.09E+01

R. Kersevan - CERN — TE-VSC-IVM

19



Update on TLEP Vacuum Design

Conductances, Pressure Profiles

The specific conductance of a 90x30 mm? elliptical cross-section is 53.23 I*m/s

In a uniform cross-section tube with uniform outgassing, a regular pump spacing of L
meters will decrease the installed pumping speed S, via the well known equation

Seft = (/S et L/12/C o )

TLEP: Effective Pumping Speed vs Pump Spacing
- |

Valid for Elliptical Cross-Section
90x30 mm’ (HxV)

Cepec = 53.23 "m/s

1000

100

/

Spump (I/3):
10 1000
500
200
100

50

Sets (/)

Pumps Spacing, L (m )

It doesn't pay to install large pumps,as the conductance will “kill” the
pumping speed!

1000 I/s pumps spaced ~ 11m apart will give only a ~53 |/s effective speed

6th TLEP Workshop — CERN — 16-18 October 2013 R. Kersevan - CERN — TE-VSC-IVM
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Update on TLEP Vacuum Design

fitted and used to find the "co

Vacuum Conditioning Time
The photodesorption yield data measured for copper (previous figure) are

nditioning time at full nominal current “ for the

3 versions of TLEP and, for reference, for the ESRF

TLEP-t | TLEP-h | TLEP-z .
-ﬂ---m 1% Fit Data Groebner, LEP, OFHC Copper
;Eyt((mﬁ 1: = " = Horizontal Scales,in seconds:
iFies () - - .95 p— 0560.5 4 <: time AT NOMINAL CURRENT
Radius (m 096 il (i1 (i1 23. _3
Egpit (V) 805,862 1,242E+6  4.005E+5 21,833 20,504 ::—‘ 10 ;K ‘ ‘
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Total Pov — =
Qi IMPORTANT NOTE:
(ph/s/m
"~was This is valid for SR hitting uniformly the vacuum chamber wall, with lumped
ouesf  absorbers after each dipole the photon dose (ph/m) “accelerates” by a

(mbar:l/s/m|
(mol/ph]

factor of ~ 11l

10°°

Example: in order to get
to eta=1.0E-3 mol/ph, one
would have to fill the ring
at nominal current for
130k sec for TLEP-t, 46k
sec for TLEP-h, 1600 sec
for TLEP-z, vs 300 sec
for the ESRF dipole

|||I| Ll Lol Lol L
100, 10, 0, e T
LA e, 0 e e
: 1|0 1|05 1|o° 1|07 TLEP-z (s)
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Update on TLEP Vacuum Design
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Behaviour of the pressure in LEP and LEP-2 vs beam energy and
SR power (N. Hilleret, CAS Vacuum 2006)
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FLUKA status and plan
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