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Linear betatron equations of motion

In the magnetic fields of dipoles magnets and quadrupole magnets (without
iImperfections) the coordinates of the charged patrticle w.r.t. the reference orbit are
given by the Hill's equations
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These are linear equations (iny = X, z). They can be integrated and give

y(s) =./&,B,(s) cos[4, (S) + @, ] 15 ( 3

Nonlinear terms in the Hill's equation appear due to nonlinearities in the magnetic
elements of the lattice present as unavoidable errors (gradient errors) or deliberately
included in the lattice



Multipolar expansion of magnetic field
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The on axis magnetic field can be expanded into multipolar components (dipole,
guadrupole, sextupole, octupoles and higher orders)
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Hill’s equation with nonlinear terms

Including higher order terms in the expansion of the magnetic field
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the Hill's equations acquire additional nonlinear terms
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No analytical solution available in general:

the equations have to be solved by tracking or analysed perturbatively



Example: nonlinear errors in the LHC
main dipoles

.. . . Dipole 1 () =1, cos MrAsURED Mu;l..’I‘IPI:ID:.;HTEFE :ﬂEPﬁNl PROTOTYTE:
F|n|te SIZG CO'IS AVERAGE OF 1 B MEASUREMENTS ALONG THE MATGNET A XIS,
reproduce only partially 1(9) Tierts oF L0 AT D = [ s

the cos-6 desing
necessary to achievea ©

pure dipole fields 006 125 S48 S 4% 5
o1t 029 -038 001 -046  0.00
5 208 271 803 hes 817 871
o 006 005 005 010 007 0.l
b4 007 020 066 075 -067 077

a5 006 005 -007 00z -0.08 -002
b 063 -060 -060 064 -076 071
a6 003 003 002 003 002 003
bé 000 001 002 603 -0.03 003
a7 003 003 002 000 002 001
b7 065 070 057 061 038 061
b9 0.25 026 026 026 021 020

LHC main dipole cross section L 073 073 0063 0062 0063 0 062

Multipolar errors up to very high order have a significant impact on the
nonlinear beam dynamics.



Sextupole magnets

Nonlinear magnetic fields are introduced in the lattice (chromatic sextupoles)
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Example: nonlinear elements in small
emittance machines

Small emittance — Strong quadrupoles — Large (natural) chromaticity

d >0
0=20

— Strong sextupoles (sextupoles guarantee the focussing of off-energy particles)

Dipole Sextupole Quadrupole

strong sextupoles have a significant impact on the electron dynamics

— additional sextupoles are required to correct nonlinear aberrations



Phenomenology of nonlinear motion (1)

The orbit in phase space for a system of linear
Hill’s equation are ellipses (or circles)

The frequency of revolution of the particles is
the same on all ellipses

The orbit in the phase space for a system of
nonlinear Hill’s equations are no longer simple
ellipses (or circles);

The frequency of oscillations depends on the
amplitude
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Resonances

m=5n=0;p=1

0s

When the betatron tunes satisfy a resonance relation ||

D'S_ Turn 2 Turn 1

mQx + an =P ET

the motion of the charged particle repeats itself ol L T TUMS
periodically o Tums

D4f : Turn 4
If there are errors and peﬁurbations wh.ich are 5-th order resonance phase space plot
sampled periodically their effect can build up and (machine with no errors)
destroy the stability of motion { 215 05 056 0.75 28

The resonant condition defines a set of lines in the
tune diagram

The working point has to be chosen away from the
resonance lines, especially the lowest order one

(example CERN-SPS working point)




Phenomenology of nonlinear motion (ll)

Stable and unstable fixed points appears which Phase space plots of close to a 5"
are connected by separatrices order resonance
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Phenomenology of nonlinear motion (lll)

The orbits in phase space of a non linear system can be broadly divided in
* Regular orbit = stable or unstable

« Chaotic orbit = no guarantee for stability but diffusion rate may be very small

The particle motion on a regular and stable
orbit is quasi—periodic

n ] .
Z(n) _ che—vakn C, = akel¢k
k=1

The betatron tunes are the main
frequencies corresponding to the peak of
the spectrum in the two planes of motion

The frequencies are given by linear
combination of the betatron tunes.

Only a finite number of lines appears
2025 0.25 effectively in the decomposition.
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Phenomenology of nonlinear motion (1V)

An example of the frequency decomposition of the nonlinear motion in the case of
a stable reqular orbit from Diamond tracking data
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If the machine is linear (i.e. only dipole and quadrupole) only the betatorn tunes
appear in the spectrum. The other lines are generated by the non linear elements



Phenomenology of nonlinear motion
summary

* detuning with amplitude

* orbit distortion

 resonances (fixed points and islands)

* regular stable trajectories (quasi periodic decompositions)
« chaotic trajectories (generally unstable)

* regular unstable trajectories

* limited stable phase space area available to the beam
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Simplified treatment of resonances

A simplified treatment of the resonance can be obtained by considering a single
nonlinear element along the ring and looking at its effect on the charged particle
motion in phase space:

p
The rest of the ring has no nonlinear

element: the motion is just a rotation
described by the unperturbed betatron

kick \
turn 2\

kick tune Q, i.e.
kil X = Acos() »=Q0
X and 0 (0 < 6 < 2n) is the azimuthal along
the ring.
When the particle reaches the nonlinear

element it receives a kick proportional to
the multipolar field error found

A 0B,
Bon! ox"

Ap =



Example: second order resonance (l)

The effect of the kick can be computed analytically. Assume a quadrupole kick

, A
p:{axr ‘ Ap = ﬁAX = IBlB_pg X Eq 1

kick Ap = ABx’ The kick perturbs the amplitude
and the phase

21tAQ Aa=Apsin(@) (radially)
Q= S__ 0 220Q = 2P cos()
v a

Substituting in Eg. 1 we obtain

AQ = PLAG cos? () = PLAG [cos(2¢) +1]
27Bp 47Bp

Over one turn the perturbed phase advance is Ap = 27 (Q + AQ) and the

total phase will become ¢ — ¢ + 27(Q + AQ)



Example: second order resonance (ll)
PLAG
478 p

and a term dependent on the phase with which the charged particle meets the
perturbing element.

The tune shift due to the kick AQ = [COS(Z(p) +1] has a constant term

Correspondingly, the perturbed tune Q + AQ changes at each turn, oscillating
around the mean value with

SLAg . . BLAg
cos(2 with an amplitude A =
a7 ) P O™ B

AQ =

If this band contains the half integer resonance, eventually, on a certain turn, the
perturbed tune reaches the half integer resonance

Q+AQ=£
2
This happens when ¢ = ¢,
BLAg P
+AO=0+ cos(2¢r) = —
Q+AQ=Q 4nBp (20r) 5 Eg. 2



Resonance stopband

When this happens the particle locks to the resonance since, in the subsequent
turns, the perturbation to the tune will remain the same and will keep the perturbed
tune fixed to the resonant value

O, —> ¢, + 2n(Q + AQ) = ¢, + 2np/2 = ¢, + TP

and the corresponding  Aq — PLAg c0s(2¢r + 27 p) = BLAg cos(2¢r) 9ives again

change in tune 4nBp 4nBp Eq. 2
We can say that the half integer line 2 ! : £
has a width 5 ¢ | o
5 Q IBLAg ;Jéj c:’“ Perturg:»ed Q |
= ! 4 modulated by +6Q
47ZB,0 . \‘:;\N from turn toytum

called resonance stopband.
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Unperturbed Q

Once the particle is locked to the resonance the trajectory becomes periodic. This
situation can lead to particle losses due to the second order resonance



Example: third order resonance

The kick due to a normal sextupole, can be written as Ap = PAX'= Pt X

2Bp
Repeating the same procedure we can compute the tune shift due to the sextupole
kick as
B"a
AQ = Pl [cos(3¢) +3cos(p)]
167 Bp

If the tune is close to a third order resonance (Q = 1/3), within the stopband given
by

BLB"'a

16nBp

AQ max =

after a sufficient number of turns the tune will lock at the third order resonance,
every three turns the motion will repeat identical and the amplitude will grow
indefinitely.

Similarly it can be shown that an octupole excites a fourth order resonance, and a
2n-pole excites a n-th order resonance



Hamiltonian of a relativistic charged particle in
an electromagnetic field

Remember from special relativity that the relativistic momenta are given by

0. = mv, - mv, 0. = mv,
© 1= (v/c)? ©J1-(v/c) ©J1-(v/c)’

and the energy of a free particle is
E =[p2c? + p2c?+ p2c® + mgc“]%

The Hamiltonian of a charged particle with coordinates (x,z,s) in an electromagnetic
field described by the potentials (A,®), is obtained by using the generalised particle
momentum

H(q,p;t) = ed)+c[(ﬁ—eﬂ)2 + mgcz]%



Hamiltonian for a charged particle in an accelerator

Choosing the reference frame along the reference orbit and measuring transverse
deviation with respect to the reference orbit the Hamiltonian reads
%

2
H(J, p;t) e(D+C|:(pX _eAx)2 +(pz _eAz)2 +(]F_)S _iASJ +mgC2]

Choosing the Coulomb gauge and ignoring electrostatic fields we can put ® =0

Using s as independent variable in place of t the new Hamiltonian reads

K(X’ Py, Z, pz’t’_H;S) :_eAs _(1+EJJ(EJ -m“c® _(px _eAx)2 _(pz _eAz)2
Jo,

c
) . D = Px — Px D. = P = P,
Using the normalised momenta Py o, HIc P o, HI/c

Po P Py Po



Hamiltonian cont’d

Assuming that the magnetic field is purely transverse A, = A, = 0, i.e. hard edge
model with no ends effect, we have

K(X, Py, 2, P,,t,—H;s) = —iAs —(1+Xj\/1— P, — P,
Py P

In terms of the multipole expansion of the magnetic field we have

eA, 1 ? (x+iz)n+1
o ,O(X+2,0j ReZ(k +ij.) T

Assuming small angles p, << p,; p, << p, and small radius machines, we have

~2 |, R2 2 M
K=P P X2+Re K+, (x+iz)™
2 20 = (n+1)!




Hills’s equations from the Hamiltonian

Keeping only lowest order terms (quadratic) in the Hamiltonian, we are left with

"2 w2 2

K px + pz . X - 4+ kl(s) (X2 _22)
2 2p(s)? 2

The equations of motions are

dg, oK dp, ~ oK

ds op ds 6—qx

X

which combined, coincide with the linear Hill's equations for the betatron motion

d’y

1
K, (8) = ———k,
) «(8) 6) (s)
S

+K,(s)y=0
K, (s) =ki(s)
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