
R. Bartolini, John Adams Institute, 27 January 2016 1/23

HT Lecture on Nonlinear beam dynamics (I)

Motivations: nonlinear magnetic multipoles

Phenomenology of nonlinear motion

Simplified treatment of resonances (stopband concept)

Hamiltonian of the nonlinear betatron motion

HT Lecture on Nonlinear beam dynamics (II)

Hamiltonian of the nonlinear betatron motion

Resonance driving terms

Tracking

Dynamic Aperture and Frequency Map Analysis

Spectral Lines and resonances

Nonlinear beam dynamics experiments at Diamond



Linear betatron equations of motion

In the magnetic fields of dipoles magnets and quadrupole magnets (without 

imperfections) the coordinates of the charged particle w.r.t. the reference orbit are 

given by the Hill’s equations
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These are linear equations (in y = x, z). They can be integrated and give 
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Nonlinear terms in the Hill’s equation appear due to nonlinearities in the magnetic 

elements of the lattice present as unavoidable errors (gradient errors) or deliberately 

included in the lattice



Multipolar expansion of magnetic field
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The on axis magnetic field can be expanded into multipolar components (dipole, 

quadrupole, sextupole, octupoles and higher orders)



Hill’s equation with nonlinear terms
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Including higher order terms in the expansion of the magnetic field
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the Hill’s equations acquire additional nonlinear terms
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 normal multipoles
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skew multipoles

No analytical solution available in general: 

the equations have to be solved by tracking or analysed perturbatively



Multipolar errors up to very high order have a significant impact on the 

nonlinear beam dynamics. 

Example: nonlinear errors in the LHC 

main dipoles

LHC main dipole cross section

Finite size coils 

reproduce only partially 

the cos- desing 

necessary to achieve a 

pure dipole fields



Sextupole magnets

Normal 

sextupole
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Normal sextupole

Skew sextupole

Nonlinear magnetic fields are introduced in the lattice (chromatic sextupoles)



Small emittance  Strong quadrupoles  Large (natural) chromaticity

 Strong sextupoles (sextupoles guarantee the focussing of off-energy particles)

strong sextupoles have a significant impact on the electron dynamics

 additional sextupoles are required to correct nonlinear aberrations 

Example: nonlinear elements in small 

emittance machines



Phenomenology of nonlinear motion (I)

The orbit in the phase space for a system of 

nonlinear Hill’s equations are no longer simple 

ellipses (or circles);

The frequency of oscillations depends on the 

amplitude

The orbit in phase space for a system of linear 

Hill’s equation are ellipses (or circles)

The frequency of revolution of the particles is 

the same on all ellipses
x
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Turn 1Turn 2

Turn 3

Turn 4

Turn 5

Resonances

When the betatron tunes satisfy a resonance relation

pnQmQ zx 

the motion of the charged particle repeats itself 

periodically

If there are errors and perturbations which are 

sampled periodically their effect can build up and 

destroy the stability of motion

The resonant condition defines a set of lines in the 

tune diagram

The working point has to be chosen away from the 

resonance lines, especially the lowest order one 

(example CERN-SPS working point)

m = 5; n = 0; p =1

5-th order resonance phase space plot 

(machine with no errors)



Phenomenology of nonlinear motion (II)

Stable and unstable fixed points appears which 

are connected by separatrices

Islands enclose the stable fixed points

On a resonance the particle jumps from one 

island to the next and the tune is locked at the 

resonance value

region of chaotic motion appear

The region of stable motion, 

called dynamic aperture, is limited by the 

appearance of

unstable fixed points and 

trajectories with fast escape to infinity

Phase space plots of close to a 5th

order resonance

Qx = 1/5



The orbits in phase space of a non linear system can be broadly divided in

• Regular orbit  stable or unstable

• Chaotic orbit  no guarantee for stability but diffusion rate may be very small

The particle motion on a regular and stable 

orbit is quasi–periodic 
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The betatron tunes are the main 

frequencies corresponding to the peak of 

the spectrum in the two planes of motion

The frequencies are given by linear 

combination of the betatron tunes.

Only a finite number of lines appears 

effectively in the decomposition. 

Phenomenology of nonlinear motion (III)



Phenomenology of nonlinear motion (IV)

An example of the frequency decomposition of the nonlinear motion in the case of 

a stable regular orbit from Diamond tracking data

Spectral Lines detected with a 

super FFT algorithm

e.g. Horizontal:

• (1, 0) 1.10 10–3 horizontal tune

• (0, 2) 1.04 10–6 Qx + 2 Qz

• (–3, 0) 2.21 10–7 4 Qx

• (–1, 2) 1.31 10–7 2 Qx + 2 Qz

• (–2, 0) 9.90 10–8 3 Qx

• (–1, 4) 2.08 10–8 2 Qx + 4 Qz

If the machine is linear (i.e. only dipole and quadrupole) only the betatorn tunes 

appear in the spectrum. The other lines are generated by the non linear elements
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Phenomenology of nonlinear motion

summary

• detuning with amplitude

• orbit distortion

• resonances (fixed points and islands)

• regular stable trajectories (quasi periodic decompositions)

• chaotic trajectories (generally unstable)

• regular unstable trajectories

• limited stable phase space area available to the beam
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Simplified treatment of resonances

A simplified treatment of the resonance can be obtained by considering a single 

nonlinear element along the ring and looking at its effect on the charged particle 

motion in phase space:

The rest of the ring has no nonlinear 

element: the motion is just a rotation 

described by the unperturbed betatron 

tune Q, i.e.

)cos(Ax 

and  (0 <  < 2) is the azimuthal along 

the ring.

When the particle reaches the nonlinear 

element it receives a kick proportional to 

the multipolar field error found  
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Example: second order resonance (I)

The effect of the kick can be computed analytically. Assume a quadrupole kick
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The kick perturbs the amplitude 

and the phase
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Substituting in Eq. 1 we obtain
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Over one turn the perturbed phase advance is  = 2 (Q + Q) and the 

total phase will become    + 2(Q + Q)

 Q
(radially)

Eq. 1



The tune shift due to the kick  1)2cos(
4
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Q has a constant term

and a term dependent on the phase with which the charged particle meets the 

perturbing element. 

Correspondingly, the perturbed tune Q + Q changes at each turn, oscillating 

around the mean value with
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If this band contains the half integer resonance, eventually, on a certain turn, the 

perturbed tune reaches the half integer resonance
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 with an amplitude

Example: second order resonance (II)
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Resonance stopband

Once the particle is locked to the resonance the trajectory becomes periodic. This 

situation can lead to particle losses due to the second order resonance

called resonance stopband. 

All particles with tune within the 

stop band, will end up locked to the 

resonance

When this happens the particle locks to the resonance since, in the subsequent 

turns, the perturbation to the tune will remain the same and will keep the perturbed 

tune fixed to the resonant value
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We can say that the half integer line 

has a width
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r  r + 2(Q + Q) = r + 2p/2 = r + p

and the corresponding 

change in tune

gives again 

Eq. 2



Example: third order resonance

Repeating the same procedure we can compute the tune shift due to the sextupole 

kick as
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 The kick due to a normal sextupole, can be written as

If the tune is close to a third order resonance (Q = 1/3), within the stopband given 

by
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after a sufficient number of turns the tune will lock at the third order resonance, 

every three turns the motion will repeat identical and the amplitude will grow 

indefinitely.

Similarly it can be shown that an octupole excites a fourth order resonance, and a 

2n-pole excites a n-th order resonance



Hamiltonian of a relativistic charged particle in 

an electromagnetic field

Remember from special relativity that the relativistic momenta are given by

and the energy of a free particle is
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The Hamiltonian of a charged particle with coordinates (x,z,s) in an electromagnetic 

field described by the potentials          , is obtained by using the generalised particle 

momentum
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Hamiltonian for a charged particle in an accelerator 

Choosing the reference frame along the reference orbit and measuring transverse 

deviation with respect to the reference orbit the Hamiltonian reads

Choosing the Coulomb gauge and ignoring electrostatic fields we can put  = 0
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Using s as independent variable in place of t the new Hamiltonian reads
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Using the normalised momenta
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Hamiltonian cont’d

Assuming that the magnetic field is purely transverse Ax = Az = 0, i.e. hard edge 

model with no ends effect, we have

Assuming small angles px << p0; pz << p0 and small radius machines, we have
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In terms of the multipole expansion of the magnetic field we have
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Hills’s equations from the Hamiltonian

The equations of motions are

which combined, coincide with the linear Hill’s equations for the betatron motion

Keeping only lowest order terms (quadratic) in the Hamiltonian, we are left with
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