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Hamiltonian of nonlinear betatron motion

The Hamiltonian for the nonlinear betatron motion is given by
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We define H, the linear part (dependent only on dipoles and normal quadrupoles)
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and V the nonlinear part dependent on the nonlinear magnetic multipoles
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Normalisation of the linear part of the Hamiltonian

We define a canonical transformation that reduces the linear part of the Hamiltonian
to a rotation

(X,0) > (J,#) canonical transformation

with generating function
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This transformation reduces ellipses in phase space to circles and the motion to a
rotation along these circles, for linear systems



Resonance driving terms (1)

The new Hamiltonian reads
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ikimp @re called resonance driving terms since they generate angle dependent
terms in the Hamiltonian that are responsible for the resonant motion of the particles
(i.e. motion on a chain of islands or on a separatrix).

On the islands the betatron tuned satisfy a resonant condition of the type
NQ,+MQ,=p — resonance (N, M) N=j—kandM=1-m

Terms of the type hy,, produce detuning with amplitude to the lowest order in the
multipolar gradient, but they can interfere with other terms in the Hamiltonian to
create resonances (perturbative theory of betatron motion)

Without angle dependent term the motion will be just an amplitude dependent
rotation



Non resonant and single resonance Hamiltonian

The dynamics with only detuning terms The dynamics with angle dependent
Is an amplitude dependent rotation terms exhibits fixed points, island

e.g. for the (4,0) resonance
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Resonance driving terms (ll)

The resonant driving terms are integrals over the whole length of the accelerator of
functions which depend on the s-location of the multipolar magnetic elements
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The solution for the stable betatron motion can be written as a quasi periodic signal
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Each resonance driving term h contributes to the Fourier coefficient of a well

precise spectral line
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Resonance driving terms from sextupoles

Let us consider the driving terms generated by a normal sextupole. In the general
definition of driving term
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We substitute the function that give the azimuthal distribution of the normal
sextupoles along the ring

V(%;5) = b, (5)( ~3x2%) =V,y(8)X +V,,(9)x2”

generate the following resonant driving terms (see Guignard, Bengtsson)
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Example: third order resonance with a sextupole

Consider a linear lattice with a single sextupole kick. The resonance driving terms
h3000 €Xciting the third order resonance (3,0) generates the frequency
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Far from the resonant values Q, = p/3 e.g.
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Approaching the resonant value Q, = 1/3
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Resonance driving terms from octupoles
In an analogous way we can see that the normal octupoles in the circular ring
V(X;s) =D, (s)(x* —6x°2° +2%) =V, (s)X* +V,,(S)x*2° +V,,(s)z*

generate the following resonant driving terms (see Guignard, Bengtsson)
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Resonance compensation

From the analysis of the Fourier expansion of the driving term we can infer simple
rules to compensate the effect of strongly excited nonlinearities

The aim is to reduce the driving term
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We have to find suitable distribution of nonlinear magnetic elements along the ring,
l.e. suitable functions V, (s) that reduce or cancel those driving terms which are
stronger in the uncorrected machine.

Typically two equal sextupoles at 60 degree phase advance apart compensate each
other, in the (3,0) resonance driving term (and p=0 which is the strongest term)

In an analogous way two equal octupoles at 45 degree phase advance apart
compensate each other in the (4,0) driving terms

However their effect on all the other resonances has to be assessed!



Can a sextupole excite a 4-th order resonance? (l)

Let us consider the nonlinear Hill’s equation for the case of a linear lattice where a
single sextupole kick is added

d?2x K,
ar LR K(s) = —K
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Let us use a perturbative procedure and try to solve this equation by successive
approximations. The perturbation parameter ¢ is proportional to the sextupole
strength k,. We look for a solution of the type:

X(S) = X, + & X, () +&% X, (s) +O(&%)
Substituting, ordering the contributions with the same perturbative order we have
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Can a sextupole excite a 4-th order resonance? (ll)

At each step we are using functions already calculated at the previous steps

Xo(S) = /&, 3, () cos[@, (S) + ] Linear solution
Term generated by the 3" order
x,(S) oc Acos[24, (S) + ¢, | resonance; linear with k, (first
order)

Terms generated by the 4™ order
X, (s) o< C c0s[34, (5) + ¢, ]+ D cos[4, (5) + 4, | and 2nd order resonance;

quadratic with k, (second order)

The series obtained from the successive approximation are in general
divergent, however the first term of the series, judiciously chosen, offer a good
approximation of the nonlinear betatron motion



Can a sextupole excite a 4-th order resonance? (lll)

The equations can be solved numerically. The phase space plots of the motion of
a charged particle in a lattice with a single thin sextupole are given by
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Tracking particles close to the resonant tune value, starting at the same tune
distance from the resonance, show that a sextupole can excite all higher order
resonances. The islands width is smaller for higher orders, i.e. the corresponding
resonances are weaker



Tracking (1)

Most accelerator codes have tracking capabilities: MAD, MADX, Tracy-Il, elegant,
AT, BETA, transport, ...

Typically one defines a set of initial coordinates for a particle to be tracked for a
given number of turns.

The tracking program “pushes” the particle through the magnetic elements. Each
magnetic element transforms the initial coordinates according to a given
integration rule which depends on the program used, e.g. transport (in MAD)

X =(xx,vy,y.,2,9) , 5 AP

PO

X, =RX, Linear map
ZRkajl+ZTJK|XJ|XI|+ZUJK|m jIX||X R

klm

Nonlinear map up to third order as a truncated Taylor series



Tracking (ll)

A Hamiltonian system is symplectic, i.e. the map which defines the evolution is
symplectic (volumes of phase space are preserved by the symplectic map)

OX,
Jap(X) = E

X, =M(X) Mis symplectic transformation X, J s =S

If the integrator is not symplectic
one may found artificial damping
or excitation effect
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The well-known Runge-Kutta integrators are not symplectic. Likewise the truncated
Taylor map is not symplectic. They are good for transfer line but they should not be
used for circular machine in long term tracking analysis

Elements described by thin lens kicks and drifts are always symplectic: long
elements are usually sliced in many sections.



Frequency Map Analysis

The Frequency Map Analysis is a technique introduced in Accelerator Physics form

Celestial Mechanics (Laskar).

It allows the identification of dangerous non linear resonances during design and
operation. Strongly excited resonances can destroy the Dynamic Aperture.
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To each point in the (X, y) aperture there
corresponds a point in the (Q,, Q,) plane

The colour code gives a measure of the
stability of the particle (blu = stable; red =
unstable)

The indicator for the stability is given by
the variation of the betatron tune during
the evolution: i.e. tracking N turns we
compute the tune from the first N/2 and
the second N/2
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Frequency Map Measurement (1)

The measurement of the Frequency Map requires a set of two independent kickers
to excite betatron oscillations in the horizontal and vertical planes of motion;

The Beam Position Monitors (BPMs) must have turn-by-turn capabilities (at least one
) in order to be able to measure the tunes from the induced betatron oscillations;

The betatron tune is generally the frequency corresponding to the maximum

amplitude in the spectrum;
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Frequency Map Measurement (ll)

A example of betatron oscillations recorded after a kick in the vertical plane at
diamond.

256 turns are recored: the time signals of many kicks is superimposed to check the

reproducibility of the kick and of the oscillations, small variation in the betatron tunes
are detected (2e-4)
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FM measurement at the Advanced Light Source

Advanced Light Source
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Dynamic Aperture: SOLEIL’s example

SOLEIL bare lattice at zero chromaticity
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Tracking includes

Systematic multipole errors
Dipole: up to 14-poles
Quadrupoles: up to 28-poles
Sextupoles: up to 54-poles
Correctors (steerers): up to 22-poles
Secondary coils in sext. - strong 10-pole term

From magnetic measurements:
Dipole: fringe field, gradient error, edge tilt errors

Coupling errors (random rotation of quadrupoles)
No quadrupole fringe fields



Phase space orbit analysis

Using a kicker and two BPMs with a known phase advance we can reconstruct the
orbit in phase space. Typically if the BPMs are at 90 degrees with the same 3 one
can recover x and x’ and plot the phase space
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Diamond horizontal phase
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The damping in amplitude is
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Frequency spectrum measured at all BPMs at
Diamond

All Diamond BPMs have turn-by-turn capabilities

* excite the beam diagonally
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kick voltage (V)

kick vaoltage (V)

Detuning with amplitude and next to leading

frequencies from turn-by-turn data

FFT as a function of the kicker strength
Periodogram of tht data; H kick

kick voltage (V)

kick voltage ()

Periodogram of tht data; % kick
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Q, seen in the V plane: (1,1) resonance Q, seen in the H plane: (1,1) resonance

2Q, seen in the H plane: (3,0) resonance  2Q, seen in the H plane: (1,2) resonance

The information in the spectral lines can be used to compensate the resonant
driving terms and improve the dynamic aperture of the ring



Bibliography

E. Wilson, CAS Lectures 95-06 and 85-19

E. Wilson, Introduction to Particle Accelerators

G. Guignard, CERN 76-06 and CERN 78-11

J. Bengtsson, Nonlinear Transverse Dynamics in Storage Rings, CERN 88-05

J. Laskar et al., The measure of chaos by numerical analysis of the fundamental
frequncies, Physica D65, 253, (1992).

R. Bartolini, John Adams Institute, 28 January 2016 24/24



