

ACCELERATOR PHYSICS

HT6 2016

E. J. N. Wilson

John Adams Institute 2005/4 - E. Wilson

Multi-Particle Effects: Space Charge

4/2/2016 1/16

Thanks to :Karlheinz SCHINDL - CERN/AB

Direct space charge (Self fields)	Fields and forces Defocusing effect of space charge Incoherent tune shift in a synchrotron
Image fields	Image effect on incoherent tune shift Coherent tune shift "Laslett" coefficients
Bunched beams	Effect of longitudinal motion Space-charge limited synchrotrons How to remove the space-charge limit

A. Hofmann, Tune shifts from self-fields and images, CAS Jyväskylä 1992, CERN 94-01, Vol. 1, p. 329

P.J. Bryant, Betatron frequency shifts due to self and image fields, CAS Aarhus 1986, CERN 87-10, p. 62

K. Schindl, Space charge, Proc. Joint US-CERN-Japan-Russia School on Part.Acc., "Beam Measurement", Montreux, May 1998, World Scientific, 1999, p. 127

Space Charge Force

Direct Space Charge - Fields

John Adams Institute 2005/4 - E. Wilson

Multi-Particle Effects: Space Charge

Force on a Test Particle Inside the Beam

Space Charge in a Transport Line

Incoherent Tune Shift in a Synchrotron

□ Beam not bunched (so no acceleration) □ Uniform density in the circular x-y cross section (not very realistic) $x'' + (K(s) + K_{sc}(s))x = 0$ $\Rightarrow Q_{x0}$ (external) + ΔQ_x (space charge) For small "gradient errors" k_x $\Delta Q_x = \frac{1}{4\pi} \int_{0}^{2R\pi} k_x(s)\beta_x(s)ds = \frac{1}{4\pi} \int_{0}^{2R\pi} K_{sc}(s)\beta_x(s)ds$

$$\Delta Q_{x} = -\frac{1}{4\pi} \int_{0}^{2R\pi} \frac{2r_{0}I}{e\beta^{3}\gamma^{3}c} \frac{\beta_{x}(s)}{a^{2}} ds = -\frac{r_{0}RI}{e\beta^{3}\gamma^{3}c} \left\langle \frac{\beta_{x}(s)}{a^{2}(s)} \right\rangle = -\frac{r_{0}RI}{e\beta^{3}\gamma^{3}cE_{x}}$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi E_{x,y} \beta^2 \gamma^3}$$

using I = $(Ne\beta c)/(2R\pi)$ with N...number of particles in ring $E_{x,y}$emittance containing 100% of particles

Direct" space charge, unbunched beam in a synchrotron
Vanishes for γ » 1
Important for low-energy machines
Independent of machine size 2πR for a given N

Incoherent Tune Shift: Image Effects

John Adams Institute 2005/4 - E. Wilson

Image Effect of Parallel Conducting Plates ctd.

Image effects do not vanish for large γ, thus not negligible for electron machines
Electrical image effects normally focusing in horizontal, defocusing in vertical plane
Image effects also due to ferromagnetic boundary (e.g. synchrotron magnets)

Incoherent and Coherent Motion

Incoherent motion

Coherent motion

Test particle in a beam whose centre of mass does not move

The **beam environment does not** "see" any motion

Each particle features its individual amplitude and phase

The **centre of mass moves** doing betatron oscillation as a whole

The **beam environment** (e.g. a position monitor "sees" the "coherent motion")

On top of the coherent motion, each particles has still its individual one

Coherent Tune Shift, Round Beam Pipe

 $\overline{X}_{\cdot\cdot}$ hor. beam position (centre of mass) a...beam radius

 $\rho...$ beam pipe radius (ρ » a)

 $b\overline{x} = \rho^2$ (mirror charge on a circle)

$$E_{ix}(\overline{x}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b - \overline{x}} \approx \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b} = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho^2} \overline{x}$$

$$\Delta Q_{x,y\,coh} = -\frac{r_0 R \langle \beta_{x,y} \rangle I}{ec \beta^3 \gamma \rho^2} = -\frac{r_0 \langle \beta_{x,y} \rangle}{2\pi \beta^2} \frac{N}{\gamma \rho^2}$$

Coherent tune shift, round pipe \Box negative (defocusing) both planes \Box only weak dependence on γ $\Box \Delta Q_{coh}$ always negative

 $F_{ix}(\overline{x}) = \frac{e\lambda}{2\pi\varepsilon_0} \frac{1}{\rho^2} \overline{x}$

The "Laslett"* Coefficients

g pole piece h vacuum		$\Delta Q_{y,inc} = -\frac{Nr_0 \langle \beta_y \rangle}{\beta^2 \gamma \pi} \left(\frac{\epsilon_0^y}{b^2 \gamma^2} + \frac{\epsilon_1^y}{h^2} + \beta^2 \frac{\epsilon_2^y}{g^2} \right)$			
s Beam b	hamber		direct e	lectr. magnet.	
	×	NT	(\mathbf{n})	nage image	
		$\Delta Q_{y,coh} = -\frac{Nr_0 \langle \beta_y \rangle}{\beta^2 \gamma \pi} \left(\frac{\xi_1^y}{h^2} + \beta^2 \frac{\xi_2^y}{g^2} \right)$			
	Laslett	Circular	Elliptical	Parallel plates	
	$\operatorname{coefficients}$	(a=b, w=h)	(e.g. $w = 2h$)	(h/w = 0)	
	$\varepsilon_0^{\mathbf{x}}$	1/2	$\frac{b^2}{a(a+b)}$		
Uniform, elliptical beam	ε_0^y	1/2	$\frac{b}{a+b}$		
in an elliptical beam pipe.	ε_1^x	0	-0.172	-0.206	
Similar formulae for ΔQ_{x}	$\varepsilon_1^{\hat{y}}$	0	0.172	0.206	
In general, $\Delta O_{} > \Delta O_{}$	ξ_1^x	1/2	0.083	$0 \qquad \pi^2/2$	1
	$\xi_1^{\bar{y}}$	1/2	0.55	$0.617(\pi^2/16)^8$	
	$\varepsilon_2^{\mathbf{x}}$	$-0.411(-\pi^2/24)$	-0.411	-0.411	
	$\varepsilon_2^{\overline{y}}$	$0.411(\pi^2/24)$	0.411	0.411	
	ξ_2^x	0	0	0	
*L.J. Laslett, 1963	ξ_2^{y}	$0.617(\pi^2/16)$	0.617	0.617	

Bunched Beam in a Synchrotron

What's different with bunched beams?

- Q-shift much larger in bunch centre than in tails
- Q-shift changes periodically with ω_s
- peak Q-shift much larger than for unbunched beam with same N (number of particles in the ring)
- □ Q-shift ⇒ Q-spread over the bunch

$$\begin{aligned} \Delta Q_{y} &= -\frac{r_{0}}{\pi} \left(\frac{q^{2}}{A} \right) \frac{N}{\beta^{2} \gamma^{3}} \frac{F_{y} G_{y}}{B_{f}} \left\langle \frac{\beta_{y}}{b(a+b)} \right\rangle \\ & \left\langle \frac{\beta_{y}}{b(a+b)} \right\rangle = \left\langle \frac{\beta_{y}}{b^{2} \left(1+\frac{a}{b}\right)} \right\rangle \overset{\beta}{\approx} \frac{1}{E_{y} \left(1+\sqrt{\frac{E_{x} Q_{y}}{E_{y} Q_{x}}}\right)} \\ & \left[\Delta Q_{x,y} = -\frac{r_{0}}{\pi} \left(\frac{q^{2}}{A} \right) \frac{N}{\beta^{2} \gamma^{3}} \frac{F_{x,y} G_{x,y}}{B_{f}} \frac{1}{E_{x,y} \left(1+\sqrt{\frac{E_{y,x} Q_{x,y}}{E_{x,y} Q_{y,x}}}\right)} \right] \end{aligned}$$

q/A..... charge/mass number of ions (1 for protons, e.g. 6/16 for $_{16}O^{6+}$)

- **F**_{x,y}......</sub>"Form factor" derived from Laslett's image coefficients ε_1^x , ε_1^y , ε_2^x , ε_2^y (F ≈ 1 if dominated by direct space charge)
- $G_{x,y}$Form factor depending on particle distribution in x,y. In general, 1 < G ≤ 2 Uniform G=1 (E_{x,y} 100% emittance) Gaussian G=2 (E_{x,y} 95% emittance) $\overline{2}$ $\overline{4}$

B_f..... "Bunching Factor": average/peak line density $B_f = \frac{\overline{\lambda}}{\hat{\lambda}} = \frac{\overline{I}}{\hat{I}}$

A Space-Charge Limited Accelerator

CERN PS Booster Synchrotron N = 10¹³ protons $E_x^* = 80 \ \mu rad m [4 \ \beta \gamma \ \sigma_x^2/\beta_x]$ hor. emittance $E_y^* = 27 \ \mu rad m$ vertical emittance $B_f = 0.58$ $F_{x,y} = 1$ $G_x/G_y = 1.3/1.5$

 Direct space charge tune spread ~0.55 at injection, covering 2nd and 3rd order stop-bands
"necktie"-shaped tune spread shrinks rapidly due to the 1/β²γ³ dependence
Enables the working point to be

moved **rapidly** to an area clear of strong stop-bands

John Adams Institute 2005/4 - E. Wilson

How to Remove the Space-Charge Limit?

Problem: A large proton synchrotron is limited in N because ΔQ_v reaches 0.3 ... 0.5 when filling the (vertical) acceptance.

Solution: Increase N by raising the injection energy and thus $\beta^2\gamma^3$ while keeping to the same ΔQ . Ways to do this:

John Adams Institute 2005/4 - E. Wilson

High Intensity Proton Beam in a FODO Line

Courtesy of Alessandra Lombardi/ CERN, 8/04

Multi-Particle Effects: Space Charge

Summary

"Direct" space charge generated by the self-field of the beam

- > acts on incoherent motion but has no effect on coherent (dipolar) motion
- > proportional to beam intensity
- defocusing in both transverse planes
- > scales with $1/\gamma^3 \Rightarrow$ barely noticeable in high-energy hadron and low-energy lepton machines

Image effects due to mirror charges induced in the vacuum envelope

- proportional to beam intensity
- > scales with $1/\gamma \Rightarrow$ not negligible for high- γ beams and machines
- Sive rise to a further change in the incoherent motion, but focusing in one plane, defocusing in the other plane
- > modify the transverse coherent motion (coherent Q-change)

Bunched beams: Space-charge defocusing depends on the particle's position in the bunch leading to a Q-spread (rather than a shift)

- > Direct space charge is a hard limit on intensity/emittance ratio
- > can be overcome by a higher-energy injector ==

M€