

ACCELERATOR PHYSICS

HT6 2016

E. J. N. Wilson

John Adams Institute 2005/4 - E. Wilson Multi-Particle Effects: Space Charge 4/2/2016 4/2/2016 1/16

Thanks to :Karlheinz SCHINDL – CERN/AB

A. Hofmann, Tune shifts from self-fields and images, CAS Jyväskylä 1992, CERN 94-01, Vol. 1, p. 329

P.J. Bryant, Betatron frequency shifts due to self and image fields, CAS Aarhus 1986, CERN 87-10, p. 62

K. Schindl, Space charge, Proc. Joint US-CERN-Japan-Russia School on Part.Acc., "Beam Measurement", Montreux, May 1998, World Scientific, 1999, p. 127

Space Charge Force

Direct Space Charge - Fields

John Adams Institute 2005/4 - E. Wilson Multi-Particle Effects: Space Charge 20.9. 2004 4/16

Force on a Test Particle Inside the Beam

Space Charge in a Transport Line

Incoherent Tune Shift in a Synchrotron

 $x'' + (K(s) + K_{sc}(s))x = 0$ $\rightarrow Q_{x0}$ (external) + ΔQ_x (space charge) $K_{SC}(s)\beta_{x}(s)ds$ $4π$ 1 $k_x(s)\beta_x(s)ds$ $4π$ 1 $\Delta Q_x = \frac{1}{4} \int k_x(s) \beta_x(s) ds = \frac{1}{4} \int K_{SC}(s) \beta_x(s) ds$ Ja
2R 0 $x (s)$ us $-\frac{1}{4}$ | Λ_{SC} $\frac{2R}{c}$ 0 $\frac{x}{\Delta x} = \frac{1}{4\pi} \int k_x(s) \beta_x(s) ds = \frac{1}{4\pi} \int$ π and Δ R π \Box Beam not bunched (so no acceleration) \Box Uniform density in the circular x-y cross section (not very realistic) For small "gradient errors" $\rm k_x$ x $3\overline{)}3$ 0 2 x $3\overline{)}3$ 0 2 x $2R\pi$ 0 $3, 3$ 0 α = $\frac{1}{4\pi} \int_{0}^{\pi} e\beta^{3} \gamma^{3} c \alpha^{2} \alpha^{2}$ = $\frac{1}{2} \int_{0}^{\pi} e\beta^{3} \gamma^{3} c \alpha^{2} (\alpha^{2} - e\beta^{3} \gamma^{3} cE)$ r_0 RI $a^2(s)$ $\beta_{x}(s)$ eβ $3\gamma^3$ c $ds = -\frac{r_0 RI}{r_0^3}$ a $\beta_{x}(s)$ $e\beta^3\gamma^3c$ $2r_0$ I 4π 1 $\Delta Q_{x} = -\frac{1}{4\pi} \int \frac{Z I_0 I}{\rho R^3 y^3 c} \frac{P_{x}(s)}{a^2} ds = -\frac{I_0 I I}{\rho R^3 y^3 c} \left(\frac{P_{x}(s)}{a^2(s)} \right) = -\frac{1}{2}$

using $I = (Ne\beta c)/(2R\pi)$ with $\overline{2\cdot 3}$ N…number of particles in ring $E_{x,y}$emittance containing 100% of particles

 "Direct" space charge, unbunched beam in a synchrotron \Box Vanishes for $\gamma \gg 1$ \Box Important for low-energy machines \square Independent of machine size $2\pi R$ for a given N

Incoherent Tune Shift: Image Effects

John Adams Institute 2005/4 - E. Wilson Multi-Particle Effects: Space Charge 20.9. 2004 8/16

Image Effect of Parallel Conducting Plates ctd.

 \Box Image effects do not vanish for large γ , thus not negligible for electron machines \Box Electrical image effects normally focusing in horizontal, defocusing in vertical plane \square Image effects also due to ferromagnetic boundary (e.g. synchrotron magnets)

Incoherent and Coherent Motion

Incoherent motion Coherent motion

Test particle in a beam whose **centre of mass does not move**

The **beam environment does not "see"** any motion

Each particle features its **individual amplitude and phase**

The **centre of mass moves** doing betatron oscillation as a whole

The **beam environment** (e.g. a position monitor **"sees"** the **"coherent** motion")

On top of the coherent motion, each particles has still **its individual** one

Coherent Tune Shift, Round Beam Pipe

 $\overline{\mathrm{X}}$ hor. beam position (centre of mass) a…beam radius

 ρ ... beam pipe radius ($\rho \gg a$)

 $b\overline{x} = \rho^2$ (mirror charge on a circle)

$$
E_{ix}(\overline{x}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b - \overline{x}} \approx \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b} = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho^2} \overline{x}
$$

 $\overline{\mathbf{x}}$

ρ

0

 $\mathcal E$

 2π

 $F_{ix}(\overline{x}) = \frac{\overline{c} \overline{x}}{2 \pi \overline{c}} \frac{1}{2^2}$

 $=$

ix

eλ

1

 \square same in vertical plane (y) due to symmetry \square force linear in $\overline{\textnormal{x}}$ \Box force positive hence defocusing in both planes

$$
\Delta Q_{\rm x, ycoh} = -\frac{r_0 R \left<\beta_{\rm x,y}\right>}{e c \beta^3 \gamma \rho^2} = -\frac{r_0 \left<\beta_{\rm x,y}\right>}{2 \pi \beta^2} \frac{N}{\gamma \rho^2}
$$

Coherent tune shift, round pipe \square negative (defocusing) both planes \Box only weak dependence on γ \Box ΔQ_{coh} always negative

The "Laslett"* Coefficients

Bunched Beam in a Synchrotron

What's different with bunched beams?

- □ Q-shift much larger in bunch centre than in tails
- \square Q-shift changes periodically with ω_{s}
- peak Q-shift much larger than for unbunched beam with same N (number of particles in the ring)
- \Box Q-shift \Rightarrow Q-spread over the bunch

Incoherent
$$
\triangle Q
$$
: **A Practical Formula**
\n
$$
\Delta Q_y = -\frac{r_0}{\pi} \left(\frac{q^2}{A} \right) \frac{N}{\beta^2 \gamma^3} \frac{F_y G_y}{B_f} \left\langle \frac{\beta_y}{b(a+b)} \right\rangle
$$
\n
$$
\left\langle \frac{\beta_y}{b(a+b)} \right\rangle = \left\langle \frac{\beta_y}{b^2 \left(1 + \frac{a}{b}\right)} \right\rangle \approx \frac{1}{E_y \left(1 + \sqrt{\frac{E_x Q_y}{E_y Q_x}}\right)}
$$
\n
$$
\Delta Q_{x,y} = -\frac{r_0}{\pi} \left(\frac{q^2}{A} \right) \frac{N}{\beta^2 \gamma^3} \frac{F_{x,y} G_{x,y}}{B_f} \frac{1}{E_{x,y} \left(1 + \sqrt{\frac{E_{y,x} Q_{x,y}}{E_{x,y} Q_{y,x}}}\right)}
$$

 q/A …… charge/mass number of ions (1 for protons, e.g. 6/16 for $_{16}O^{6+}$)

- ${\sf F}_{{\sf x},{\sf y}}$ ……"Form factor" derived from Laslett's image coefficients ε_1 ^x, ε_1 ^y, ε_2 ^x, ε_2 ^y (F ≈ 1 if dominated by direct space charge)
- **Gx,y**……Form factor depending on particle distribution in x,y. In general, 1 < G ≤ 2 Uniform G=1 ($\mathsf{E}_{\mathsf{x},\mathsf{y}}$ 100% emittance) Gaussian G=2 (E_{x,y} 95% emittance)

Bf…… "Bunching Factor": average/peak line density I ˆ $\bar{\text{I}}$ $\hat{\lambda}$ λ $B_f = \frac{\kappa}{\hat{s}} =$

A Space-Charge Limited Accelerator

CERN PS Booster Synchrotron $N = 10^{13}$ protons $E_x^* = 80$ µrad m [4 $\beta \gamma \sigma_x^2/\beta_x$] hor. emittance $\mathrm{E_{y}}^{*}$ = 27 μ rad m $^{-}$ vertical emittance $B_f = 0.58$ $F_{x,y} = 1$ $G_x/G_y = 1.3/1.5$

□ Direct space charge tune spread **~0.55 at injection**, covering 2nd and 3rd order stop-bands **"necktie"-shaped tune spread** ${\sf shrinks}$ rapidly due to the $1/\beta^2\gamma^3$ dependence \Box Enables the working point to be moved **rapidly** to an area

clear of strong stop-bands

How to Remove the Space-Charge Limit?

Problem: A **large proton synchrotron is limited in N** because $\Delta\mathsf{Q}_\mathsf{y}$ reaches 0.3 … 0.5 when filling the (vertical) acceptance.

Solution: Increase N by raising the injection energy and thus $\beta^2\gamma^3$ while keeping to the same ΔQ . Ways to do this:

High Intensity Proton Beam in a FODO Line

[Courtesy](#page-5-0) of Alessandra Lombardi/ CERN, 8/04

Summary

"Direct" space charge generated by the self-field of the beam

- acts on incoherent motion but has no effect on coherent (dipolar) motion
- \triangleright proportional to beam intensity
- \triangleright defocusing in both transverse planes
- \triangleright scales with $1/\gamma^3 \Rightarrow$ barely noticeable in high-energy hadron and low-energy lepton machines

Image effects due to mirror charges induced in the vacuum envelope

- \triangleright proportional to beam intensity
- \triangleright scales with $1/\gamma \Rightarrow$ not negligible for high- γ beams and machines
- \triangleright give rise to a further change in the incoherent motion, but focusing in one plane, defocusing in the other plane
- \triangleright modify the transverse coherent motion (coherent Q-change)

Bunched beams: Space-charge defocusing depends on the particle's position in the bunch leading to a Q-spread (rather than a shift)

- \triangleright Direct space charge is a hard limit on intensity/emittance ratio
- \triangleright can be overcome by a higher-energy injector \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare