

03/Feb/2016 17:23:55 Page 2

UNITS

Magn Vector Pot : Wb/m

Current Density : A/mm² Conductivity

MODEL DATA C:\Users\zwap032\Document

s\Opera\dip_C_full.st Quadratic elements

XY symmetry Vector potential Magnetic fields

Static solution Scale factor: 1.0

23018 elements 46217 nodes

9 regions

: A/m

S/mm

: W

: N

: J

kg

Length Magn Flux Density: T

Power

Energy

Pressure

Force

Mass

Magnetic Field

```
Vinit of Length : mm
Unit of Magnetic Field : A/m
Victor Pot : Wb/m
                                                                  | Unit of Magn Flux Density: T
| Unit of Magn Scalar Pot : A
    Unit of Magn Vector Pot : Wb/m
                                                                  | Unit of Conductivity : S/mm
    Unit of Current Density : A/mm^2
Unit of Force : N
                                                                  | Unit of Power
                                                                  | Unit of Energy
    Unit of Electric Field
                                                                  | Unit of Elec Flux Density: C/m^2
    Unit of Mass : kg | Unit of Pressure : Pa
Unit of Charge Density : nicroC/m³3 | Unit of Flectric Pot : voit
Opera-2d > CONTOUR COMPONENT-POT STYLE-LINE LEBEL-NUMBERS AUTOMATIC-YES LINES-10 COLOUR-AUTOMATIC REGI=1 REG2=* MATERIAL-ALL NOT-NONE DEFORMED-NO HOMOGENEITY-NO ERASE-NO
    RMS error over whole model = 0.13%.
    Weighted RMS error = 0.13%
Component: POT
      12 lines from -0.11 to 0.0
```


Typical pole designs

To compensate for the non-infinite pole, shims are added at the pole edges. The area and shape of the shims determine the amplitude of error harmonics which will be present.

Dipole:

The designer optimises the pole by 'predicting' the field resulting from a given pole geometry and then adjusting it to give the required quality.

When high fields are present, chamfer angles must be small, and tapering of poles may be necessary

Magnet geometry

Dipoles can be 'C core' 'H core' or 'Window frame'

"C' Core:

Advantages:

Easy access;

Classic design;

Disadvantages:

Pole shims needed;

Asymmetric (small);

Less rigid;

The 'shim' is a small, additional piece of fero-magnetic material added on each side of the two poles – it compensates for the finite cut-off of the pole, and is optimised to reduce the 6, 10, 14..... pole error harmonics.

'Residual' fields

Residual field - the flux density in a gap at I = 0;

Remnant field B_R - value of B at H = 0;

Coercive force $\mathbf{H}_{\mathbf{C}}$ - negative value of field at $\mathbf{B} = 0$;

$$\begin{split} I = 0 \colon & \int H.ds = 0; \\ So \colon & (H_{steel}) \; \lambda + (H_{gap})g = 0; \\ & B_{gap} = (\mu_0)(\text{-}H_{steel})(\lambda/g); \\ & B_{gap} \approx (\mu_0) \; (H_C)(\lambda/g); \\ Where \colon \; \lambda \text{ is path length in steel;} \end{split}$$

g is gap height.

Because of presence of gap, residual field i determined by coercive force $H_C(A/m)$ and <u>not</u> remnant flux density B_R (Tesla).

