Discovering the Top Partners

in Same-Sign Dilepton Events at the LHC

Roberto Contino

Università di Roma La Sapienza

R.C., G. Servant JHEP 0806:026 (2008)

The theoretical framework

• the SM fermions mix linearly with the composite heavy fermions (partial compositeness)

Constraints on the strong sector from the LEP precision tests : 1. Custodial Symmetry

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \qquad \qquad \Delta \rho \equiv (\rho - 1) = \frac{4}{v^2} \left[\Pi_{11}(0) - \Pi_{33}(0) \right]$$

• The bound from LEP $\Delta \rho \lesssim 2 \times 10^{-3}$ strongly constrains tree-level corrections

• If the residual symmetry after EWSB is just U(1)_Q there will be tree-level corrections from the strong sector to $\Delta \rho$

$$\langle J^1_{\mu} J^1_{\nu} \rangle \neq \langle J^3_{\mu} J^3_{\nu} \rangle$$

 $\langle J^1_\mu J^1_\nu \rangle = \langle J^3_\mu J^3_\nu \rangle$

A larger preserved "custodial" symmetry SU(2)_C under which Jⁱ_μ transforms like a triplet can protect Δρ
 [Sikivie et al. NPB 173 (1980) 189]

$$SU(2)_L \times SU(2)_R \to SU(2)_C$$

Constraints on the strong sector from the LEP precision tests : 2. Custodial Parity

$$g_{Lb} \, \frac{g}{\cos \theta_W} \, Z_\mu \bar{b}_L \gamma^\mu b_L$$

$$g_{Lb} = g_{Lb}^{SM} + \delta g_{Lb}$$
$$g_{Lb}^{SM}|_{tree} = \left(T_L^3 - Q\sin^2\theta_W\right)$$

• The bound from LEP $\delta g_{Lb}/|g_{Lb}^{SM}| \lesssim 0.25\%$ strongly constraints tree-level corrections

[Agashe, DaRold, R.C., Pomarol PLB 641 (2006) 62]

 $SU(2)_L \times SU(2)_R \times P_{LR} \to SU(2)_C \times P_{LR}$

Assumptions:

1. The global symmetry of the strong sector is:

 $O(4) \times U(1)_X \to O(3) \times U(1)_X \qquad Y = T_R^3 + X$

2. SM fields are linearly coupled to composite operators:

 $\mathcal{L}_{int} = \Phi^{\dagger} \mathcal{O}_{\Phi} + h.c.$

then: i) One can always rotate to a basis in which each operator \mathcal{O}_{Φ} has definite quantum numbers $T_{L,R}$, $T_{L,R}^3$

- ii) One can univocally assign to each SM field Φ definite quantum numbers $T_{L,R}$, $T_{L,R}^3$ corresponding to those of the operator \mathcal{O}_{Φ}
- 3. We demand b_L to be an eigenstate of P_{LR} :

$$T_L = T_R , \qquad T_L^3 = T_R^3$$

so that $\mathcal{L}_{int} = \overline{b}_L \mathcal{O}_b + h.c.$ is invariant under P_{LR}

Notice:

• At zero momentum the coupling to the Z is given by:

$$\frac{g}{\cos \theta_W} \left(Q_L^3 - Q_{Sin}^2 \theta_W \right) Z_\mu \bar{\psi} \gamma^\mu \psi$$

the electric charge is conserved

possible modifications to g_{Lb} can only arise from corrections to Q_L^3

• We can treat the SM field W_L^3 as an external source that probes Q_L^3

It follows:

$$\delta g_{Lb} = 0$$
 by $U(1)_V \times P_{LR}$ invariance

$$\left[U(1)_V \subset SU(2)_C\right]$$

 Z_{μ}

b

proof:

from $U(1)_V$ invariance it follows:

from P_{LR} invariance it follows:

$$0 = \delta Q_V^3 = \delta Q_L^3 + \delta Q_R^3$$
$$\delta Q_L^3 = \delta Q_R^3$$

$$\implies \quad \delta Q_L^3 = 0$$

A simple Two-site model:

Exotic top partner with charge +5/3

$$\begin{aligned} \mathcal{Q} &= (\mathbf{2}, \mathbf{2})_{2/3} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix}, \quad \tilde{T} = (\mathbf{1}, \mathbf{1})_{2/3}, \quad \mathcal{H} = (\mathbf{2}, \mathbf{2})_0 = \begin{bmatrix} \phi_0^{\dagger} & \phi^+ \\ -\phi^- & \phi_0 \end{bmatrix} \\ b_L \text{ mixes with } B \text{ which has: } \quad T_L^3 = T_R^3 = -\frac{1}{2} \\ &\checkmark \text{ Assumption #3 fulfilled} \rightarrow \text{Zbb protection at work} \\ \mathcal{L} &= \bar{q}_L \vartheta q_L + \bar{t}_R \vartheta t_R \\ &+ \text{Tr} \left\{ \bar{\mathcal{Q}} \vartheta - M_Q \right) \mathcal{Q} \right\} + \bar{\tilde{T}} \vartheta - M_{\bar{T}}) \tilde{T} + Y_* \text{Tr} \left\{ \bar{\mathcal{Q}} \mathcal{H} \right\} \tilde{T} + h.c \\ &+ \Delta_L \bar{q}_L (T, B) + \Delta_R \bar{t}_R \tilde{T} + h.c. \end{aligned}$$
After rotating to the mass eigenbasis
$$\tan \varphi_L = \frac{\Delta_L}{M_Q}, \quad \tan \varphi_R = \frac{\Delta_L}{M_{\bar{T}}} \\ \mathcal{L}_{yuk} = Y_* \sin \varphi_L \sin \varphi_R \left(\bar{t}_L \phi_0^{\dagger} t_R - \bar{b}_L \phi^- t_R \right) + Y_* \cos \varphi_L \sin \varphi_R \left(\bar{T} \phi_0^{\dagger} t_R - \bar{B} \phi^- t_R \right) \\ &+ Y_* \sin \varphi_L \cos \varphi_R \left(\bar{t}_L \phi_0^{\dagger} \tilde{T} - \bar{b}_L \phi^- \tilde{T} \right) + Y_* \sin \varphi_R \left(\bar{T}_{5/3} \phi^+ t_R + \bar{T}_{2/3} \phi_0 t_R \right) + . \end{aligned}$$

Discovering the top partners at the LHC

LHC 14 TeV 10⁴ $pp \to B \, \bar{t} \, j + X$ 10³ $\lambda_B = 4, 3, 2$ σ [fb] 10² 10 $pp \to B\bar{B} + X$ 1 0.1 400 600 1600 800 1000 1200 1400 1800 2000 M_B [GeV]

Single production

Decay modes

FCNC : absent for a 4th generation ! Z_L, h $W_L^ W_L^+$ Z_L, \prime hur t_R / b_R B t_R / b_R T

Discovering the B, $T_{5/3}$ heavy partners in same-sign di-lepton events [R.C. and G.Servant JHEP 0806:026 (2008)]

 \checkmark $t\bar{t} + jets$ is not a background [except for charge mis-ID and fake electrons]

✓ For the $T_{5/3}$ case one can reconstruct the resonant (tW) invariant mass

Signal and Background Simulation

Signal and SM background have been simulated using:

- MadGraph/MadEvent [MatrixElement] + Pythia [Showering no hadronization or und.event]
- Quark/Jet matching a la MLM

 η

- Jets reconstructed with a cone algorithm (GetJet) with $\Delta R = 0.4$, $E_T^{min} = 30 \,\text{GeV}$
- * Jet energy and momentum smeared by $100\%/\sqrt{E}$ to simulate the detector resolution

		σ [fb]	$\sigma \times BR(l^{\pm}l^{\pm})$ [fb]
	$T_{5/3}\overline{T}_{5/3}/B\overline{B} + jets (M = 500 \text{ GeV})$	$2.5 imes 10^3$	104
	$T_{5/3}\overline{T}_{5/3}/B\overline{B} + jets (M = 1 \text{ TeV})$	37	1.6
	$4\overline{4}W^+W^- + i de (\neg 4\overline{4}b + i de)$	101	F 1
	$\begin{bmatrix} ttW & VW \\ - & V \end{bmatrix} + jets (\supset tth + jets)$	121	0.1
SM bckg	$ttW^{\pm} + jets$	595	18.4
$n_h = 180 \text{ GeV}$]	$W^+W^-W^\pm + jets \ (\supset hW^\pm + jets)$	603	18.7
L	$W^{\pm}W^{\pm} + jets$	340	15.5

other backgrounds:

★ Events where one lepton comes from a b-decay

removed by our cuts : $p_T(l) \ge 25 \, \text{GeV}$ $\Delta R(lj) \ge 0.4$

★ Fake leptons from light jets (from W + jets and $t\bar{t} + jets$)

★ $t\bar{t} + jets$ and Z + jets events where the charge of one lepton is mis-identified

 \rightarrow Z + jets strongly reduced by a cut on missing E_T

for $t\bar{t} + jets$ the hardest lepton has $p_T(l) \sim 100 \,\text{GeV}$

 \rightarrow for $\epsilon_{mis} \sim 10^{-4}$ $t\bar{t} + jets$ negligible

★ $Wl^+l^- + jets$ events where one lepton is lost

technically difficult to simulate (with Madgraph) with all the needed jets \Rightarrow we estimate it to be $\leq 30\%$ of the sum of the included backgrounds

jets - with two different cone sizes

jet invariant mass with two different cone sizes

Strategy and cuts

★ For $\Delta R = 0.4$ only the M=1 TeV signal has one "double" jet from boosted W's

★ We demand at least 5 hard jets ($p_T \ge 30 \text{ GeV}$): $l^{\pm}l^{\pm} + n \text{ jets} + \not{\!\!\!E}_T \quad (n \ge 5)$

Cuts:

ł		$p_T(1st) \ge 100 \text{ GeV}$		$p_T(1st) \ge 50 \text{ GeV}$	
	$\underline{jets}: \langle$	$p_T(2nd) \ge 80 \text{ GeV}$	$\underline{leptons}: \langle$	$p_T(2nd) \ge 25 \text{ GeV}$	$\not\!\!\!E_T \ge 20 \text{ GeV}$
1		$n_{jet} \ge 5, \eta_j \le 5$		$ \eta_l \le 2.4, \Delta R_{lj} \ge 0.4$	

	signal (M = 500 GeV)	$\begin{array}{c} \text{signal} \\ (M = 1 \text{ TeV}) \end{array}$	$t\bar{t}W$	$t\bar{t}WW$	WWW	$W^{\pm}W^{\pm}$
Efficiencies (ϵ_{main})	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main}$	44.2	0.67	1.4	0.62	0.15	0.16

Extra Cuts	$p_T(1st jet) \ge 200 \text{ GeV}$		signal (M = 1 TeV)	$t\bar{t}W$	$t\bar{t}WW$	WWW	WW
for M=1TeV:	$\sum \vec{p}_T(l_i) \ge 300 \text{ GeV}$	Efficiencies (ϵ_{disc})	0.65	0.091	0.032	0.16	0.18
	i	$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main} \times \epsilon_{disc}$	0.43	0.12	0.02	0.02	0.03

Discovery Potential:

		Liss	
M = 500 GeV	$T_{5/3} + B$ B only	$56 \mathrm{pb}^{-1}$ 147 pb ⁻¹	M = 1

		L_{disc}
ToV	$T_{5/3} + B$	$15\mathrm{fb}^{-1}$
IEV	B only	$48\mathrm{fb}^{-1}$

Mass Reconstruction M=500 GeV

1. Reconstruct 2 W's

 $|M(jj) - m_W| \le 20 \text{ GeV}$

 $\Delta R_{jj}(1 \text{st pair}) \leq 1.5$ $|\vec{p}_T(1 \text{st pair})| \geq 100 \text{ GeV}$ $\Delta R_{jj}(2 \text{nd pair}) \leq 2.0$ $|\vec{p}_T(2 \text{nd pair})| \geq 30 \text{ GeV}$

2. Reconstruct 1 top (t=Wj)

 $|M(Wj) - m_t| \le 25 \text{ GeV}$

	$\begin{array}{c c} \text{signal} \\ (M = 500 \text{ GeV}) \end{array}$	$t\bar{t}W$	$t\overline{t}WW$	WWW	WW
ϵ_{2W}	0.62	0.36	0.49	0.29	0.15
ϵ_{top}	0.65	0.56	0.64	0.35	0.35

CDF search and bounds

[M. Hickman, D. Whiteson, M. Wilson, D. Berge]

- ★ 2.7 fb^-1 analyzed by CDF at 1.96 TeV
- ★ Cuts: 1. Two same-charge leptons with $|\eta| < 1.1$ and $p_T > 20 \,\text{GeV}$
 - 2. At least two jets with $|\eta| < 2.4$ and $p_T > 25 \,\mathrm{GeV}$
 - 3. At least one b-tag
 - 4. At least 20 GeV of missing transverse energy

largest bckg after cuts (majority of fakes from heavy quarks)

- ★ Included backgrounds:
 - Fake leptons (from light or heavy jets) from $W + jets \supset Wb\bar{b}, Wc\bar{c}, t\bar{t} \rightarrow W + jets$)
 - Charge mis-ID electrons from $t\bar{t} + jets(Z + jets)$ \leftarrow killed by miss ET cut

Final bound at 95% CL :

$$m_{b'} \ge 325 \,\mathrm{GeV}$$

 $m_{B,T_{5/3}} \ge 351 \,\mathrm{GeV}$

Conclusions

Heavy partners of the top are a robust and motivated prediction of a large class of non-supersymmetric models

Same-sign dilepton final states seem promising for an early discovery of B and $T_{5/3}$

 \checkmark CDF already set an important bound: $m_{B,T_{5/3}} \ge 351 \,\mathrm{GeV}$

A fully-detailed analysis at the LHC is in progress by both ATLAS and CMS groups

Extra Slides

7 Production of the heavy tops (\tilde{T} , T, $T_{2/3}$) has been studied in the literature:

← Single production via *bW* fusion → best channel: $\tilde{T} \to W^+ b \to l^+ \nu b$

LHC reach with $L = 300 \text{ fb}^{-1}$: M = 2 (2.5) TeV for $\lambda_T = 1 (2)$

.....

see: Azuelos et al. Eur.Phys.J. C39S2 (2005) 13 [hep-ph/0402037]

M. Perelstein, M. Peskin, A. Pierce Phys. Rev. D69 (2004) 075002

◆ Pair production → best channels:
$$\tilde{T}\bar{\tilde{T}} \rightarrow \begin{cases} W^+ b W^- \bar{b} \\ W^+ b h \bar{t} \\ W^+ b Z \bar{t} \end{cases}$$
final states with 1 charged lepton

 $L_{disc} = 2.1(90) \, \text{fb}^{-1}$ for $M_{\tilde{T}} = 0.5(1) \, \text{TeV}$

.....

see: J.A. Aguilar-Saavedra PoSTOP2006:003,2006 [hep-ph/0603199] and refs. therein

Pair production of the heavy bottom (B) has also been investigated recently:

Skiba and Tucker-Smith PRD 75 (2007) 115010

C. Dennis et al. hep-ph/0701158

→ Challenge: $t\bar{t} + jets$ huge background → hard cuts on M_{eff} needed

 additional strategy proposed by Skiba and Tucker-Smith :

look for highly boosted tops and Ws and cut on single jet invariant mass

 \odot works only for heavy masses $M_B \gtrsim 1 \text{ TeV}$

• results depend on the jet energy algorithm used

Mass Reconstruction M=1 TeV

Extra Cuts for reconstruction at M=1TeV

(looser than extra cuts for discovery)

 $M_{inv}(tot) \ge 1500 \text{ GeV}$ $p_T(1st \text{ jet}) \ge 200 \text{ GeV}$ $p_T(2nd \text{ jet}) \ge 100 \text{ GeV}$ $p_T(1st \text{ lepton}) \ge 100 \text{ GeV}$

	signal (M = 1 TeV)	$t\bar{t}W$	$t\bar{t}WW$	WWW	WW
Efficiencies (ϵ_{rec})	0.83	0.18	0.07	0.22	0.38
$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main} \times \epsilon_{rec}$	0.55	0.24	0.04	0.03	0.06

1. Reconstruct 1 or 2 W's

 $|M(jj) - m_W| \le 20 \text{ GeV}$

 $\Delta R_{jj}(1 \text{st pair}) \le 0.7$ $|\vec{p}_T(1 \text{st pair})| \ge 250 \text{ GeV}$

 $\Delta R_{jj}(\text{2nd pair}) \le 1.5$ $|\vec{p}_T(\text{2nd pair})| \ge 80 \text{ GeV}$

	$ \begin{array}{c} \text{signal}\\ (M = 1 \text{TeV}) \end{array} $	$t\bar{t}W$	$t\overline{t}WW$	WWW	WW
$\epsilon_{2W} \ \epsilon_{1W}$	$0.31 \\ 0.57$	$0.15 \\ 0.62$	$0.23 \\ 0.59$	$0.16 \\ 0.58$	$0.071 \\ 0.49$

2. Reconstruct 1 top: (t=Wj)

i)	t=Wj	using events with 2 W
ii)	t=Wj	using events with 1 W
iii)	t=jj u	sing events with 1 W

	$\begin{array}{c} \text{signal} \\ (M = 1 \text{TeV}) \end{array}$	$t\bar{t}W$	$t\bar{t}WW$	WWW	WW
$\epsilon_{top}^{[2W]}(t=Wj)$	0.62	0.56	0.62	0.11	0.13
$\left \begin{array}{c} \epsilon_{top}^{[1W]}(t=Wj) \end{array} \right $	0.44	0.56	0.53	0.22	0.20
$\epsilon_{top}(t=jj)$	0.18	0.04	0.06	0.06	0.07

