Top quarks in ATLAS: the early days and afterwards

M. Cobal University of Udine and INFN Trieste

TH Institute on Top Quark Physics CERN, May 25th 2009

Top quarks in ATLAS: the early days and afterwards

LHC as a top factory

• LHC will produce top quarks in heaps

- σ(tt) is about 850 pb
 (x100 Tevatron) @ 14 TeV
- rate of tt events is ~ Hz
- Expect millions per year

LHC as a top factory

• LHC will produce top quarks in heaps

- σ(tt) is about 850 pb
 (x100 Tevatron) @ 14 TeV
- rate of tt events is ~ Hz
- Expect millions per year

 $\sigma(tt)$ @ 10 TeV ~ $\frac{1}{2} \sigma(tt)$ @ 14 TeV [all results here shown for 14 TeV]

The 2009/10 data sample

• No winter shutdown in 2009/2010

Beam energy

- No intention of long running below 5 TeV/beam
- Short collision run at injection energy 450 GeV/beam
- Possibly stop along the way several times for machine commissioning
- Reach 5 TeV/beam a.s.a.p.

Data volume

- Peak Luminosities from $5x10^{31}$ to $2x10^{32}$ cm⁻²s⁻¹
- First 100 days of operation ~ 100 pb⁻¹
- Next 100 days of operation ~ 200 pb⁻¹

Top reconstruction in LHC

- \star jets/missing E_T
- ★ b-tagging

Top reconstruction in ATLAS

Jets	$ \eta_{jet} < 5.0$ (typically: ≤ 2.5 for b-tag or mass resolution)				
Electrons	$ \eta_{electron} \le 2.5$ for inner detector				
Muon spectrometer	$ \eta_{muon} \le 2.5$ $\int track match$				
Tracks (precision)	$ \eta_{charged} \le 2.5$				
Lepton triggers	$ \eta_{lepton} \le 2.5; p_T > 20$ GeV (e), 20 GeV (μ)				

ATLAS: straw tracker *

Problems with first data

Several uncertainties affecting our measurements

- Trigger efficiency
- Not " a regime" detector
- Lepton identification
- Missing E_T calibration
- Light/b-jet JES
- QCD (i.e.ISR/FSR)
- Beam (Pile-up, Lumi)
- PDFs
- Background normalisation

How to see top events on "day 1"

The first top signal

- Counting method: $\Delta\sigma/\sigma = 3 \oplus 17\%$ (stat \oplus syst)
- More sensitive to background normalization
- Likelihood method: $\Delta\sigma/\sigma = 7 \oplus 16\%$ (stat \oplus syst)
- Sensitive to the background shape

The first top signal

Customatica	Likeliho	od fit	Counting method (elec)		
Systematics	Electron	Muon	Default	W const.	
Statistical	10.5	8.0	2.7	3.5	
Lepton ID efficiency	1.0	1.0	1.0	1.0	
Lepton trigger efficiency	1.0	1.0	1.0	1.0	
50% more W+jets	1.0	0.6	14.7	9.5	
20% more W+jets	0.3	0.3	5.9	3.8	
Jet Energy Scale (5%)	2.3	0.9	13.3	9.7	
PDFs	2.5	2.2	2.3	2.5	
ISR/FSR	8.9	8.9	10.6	8.9	
Shape of fit function	14.0	10.4	-	-	

Di-lepton channel

- 2 leptons wit $P_T > 20 \text{ GeV}$
- MET > 25 GeV (30 for ee/μμ)
- At least 2 jets with PT>20 GeV
- Remove m_{||} ~ 90 GeV (ee/μμ)
 6.2% (em), 2.3% (ee), 2.8% (mm)

9% precision

	cut and count method						
$\Delta\sigma/\sigma$ [%]	eμ	ee	$\mu\mu$	all			
CTEQ6.1L set	2.4	2.9	2.0	2.4			
MRST2001L set	0.9	1.1	0.7	0.9			
JES-5%	-2.0	0.0	-3.1	-2.1			
JES+5%	2.4	4.1	4.7	4.6			
FSR	2.0	2.0	4.0	2.0			
ISR	1.1	1.1	1.2	1.1			

Systematics include: Lepton eff/fake Rate and theorethical unc. on assumed cross-section

Cut and Count method: $\Delta \sigma / \sigma = (4(\text{stat})^{+5}_{-2}(\text{syst}) \pm 2(\text{pdf}) \pm 5(\text{lumi}))\%$

Top Mass

- Studies of potential: 14 TeV & 1 fb⁻¹
- Regime of "top factory" → don't worry about acceptances
- Require > 1 or > 2 b-tags
- W with 2 untagged jets
 W-mass window cut
 JES correction using W_{pdg} mass
- Choose b-W assignment
- Improve purity by combinatorial background with additional cuts
- Reconstructed M_{top} as bjj mass and fit with Gaussian+polinomial

5.3 ± 0.3 GeV (stat)

Systematics

Systematic uncertainty	stematic uncertainty χ^2 minimization method	
Light jet energy scale	0.2 GeV/%	0.2 GeV/%
b jet energy scale	0.7 GeV/%	0.7 GeV/%
ISR/FSR	$\simeq 0.3 \text{ GeV}$	$\simeq 0.4 \text{ GeV}$
b quark fragmentation	$\leq 0.1~{ m GeV}$	$\leq 0.1 \text{ GeV}$
Background	negligible	negligible
Method	0.1 to 0.2 GeV	0.1 to 0.2 GeV

- Systematics dominates (JES)
- ΔM_{top} =1 to 3,5 GeV if JES 1-5%

At 10 TeV

Numbers from Stefano Frixione et al. [arXiv:0804.2800] NLO+NLL, CTEQ6M, $m_{top} = 172.5 GeV$

At 10 TeV

Numbers from Stefano Frixione et al. [arXiv:0804.2800] NLO+NLL, CTEQ6M, $m_{top} = 172.5 GeV$

At ~200 pb⁻¹ more top-quarks than the Tevatron

At 10 TeV

Numbers from Stefano Frixione et al. [arXiv:0804.2800] NLO+NLL, CTEQ6M, $m_{top} = 172.5 GeV$

At ~200 pb⁻¹ more top-quarks than the Tevatron

..But background does not scale as top!!!

Top properties

• Top quark provides various handles for New Physics

Examples for unusual production and rare decays

ttbar mass

• Theory provides candidates for ttbar resonances

- Massive Z-like bosons in
- Kaluza Klein excited states
- Axigluons
- Massive gluons
- Narrow leptophobic Z' in topcolor models
- Narrow resonances (independent of theory) should be visible as peak in invariant mass spectrum of ttbar pairs.
- The differential cross section as a function of the invariant mass can be calculated.

ttbar mass

- Semileptonic decay channel (>=4 jets, =2 b-tags)
- Purely geometric method to minimise sensitivity to JES
 - closest jets = hadronic W + closest b-jet = hadronic top
 - On leptonic side: for p_z (neutrino) M_W constraint

- Count SM ttbar in mass window twice the detector resolution
- Discovery potential for narrow resonances

Top spin polarization

- t quark decays before hadronization \rightarrow spin info conserved
- In SM: top unpolarised, but tt spins correlated
- In new production models: modified correlations

Angular reconstruction and results

- Light jet pairs which give the mass closest to Mw.
- Pair with b-jet which gives Mjjb closest to Mtop
 - 1D distributions of $\cos\theta_1 \cos\theta_2$ and $\cos\Phi$ distributions corrected bin-by-bin back to generator level to extract spin correlation
- Statistical/systematic uncertainties

Measurement	Int L	stat	syst
A(q-I) ≈ 0.67	1 fb ⁻¹	0,17	0,18
$A_D(q-l) \approx -0.40$	1 fb ⁻¹	0,11	0,09

- Require O(10 fb⁻¹) to observe 5σ
 - Good control of systematics essential
 - B-tagging efficiency, jet energy scale, ISR/FSR

W polarisation in top quark decays

W produced with different helicities, can be measured by θ_{i}^{*} Angle between W in top frame and lepton in W frame $\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{2}\left[F_{0}\left(\frac{\sin\theta_{\ell}^{*}}{\sqrt{2}}\right)^{2} + F_{L}\left(\frac{1-\cos\theta_{\ell}^{*}}{2}\right)^{2} + F_{R}\left(\frac{1+\cos\theta_{\ell}^{*}}{2}\right)^{2}\right]$ F_R≠0 only $\theta_{\ell}^* = \pi - \theta_{\ell b}$ **1**+1 if m_b>0 +1/2 t +1/2 +1/2 V_L=1 and g_R=g_L=V_R=0 SM $F_0 = \Gamma_0 / \Gamma_{tot}$ W+ +1/2 **1**+1 0.6 $F_R = \Gamma_R / \Gamma_{tot}$ $=\Gamma_L/\Gamma_{tot}$ rescaled - In SM, $F_0 \approx 0.695$, $F_1 \approx 0.304$, $F_R \approx 0.001$ • Driven by m_t/m_w and V-A structure of weak int. 03 Extensions to SM can result in enhanced F₁ and 02 /or F_{R} 0.1Try reconstruct the $\cos\theta_{l}^{*}$ and fit the fractions of longitudinal, left and right polarised W

-0.75

-0.5

-0.25

cos0*

0.25

0.5

0.75

W polarisation studies at LHC

• Concentrate on the $\cos\theta_{l}^{*}$ method

- Combined analysis with spin correlations
- Select events with lepton + ≥4 jets and missing E_T, with two jets b-tagged
- Expect around 10k events per fb⁻¹
 - Main background from t-tbar decays involving τ (around 10%); single top and W+jets < 5%
- Reconstruct cosθ^{*}_l distribution and go back to 'generator' level with correction weight function
 - Exclude extremes of distribution where correction is largest
 - Uncertainty / control of correction function is significant source of systematics
- With enough statistics, can extract F_0 and F_R
 - And hence $F_L via F_0 + F_L + F_R = 1$

W polarisation results and prospects

- Some representative results and expectations
 - Using $\cos\theta_{l}^{*}$, other methods also used

Expt	fb⁻¹	F ₀	FL	F _R
CDF lj	1,9	±0.16		±0.07
D0 lj+ll	2,7	±0.11 ±0.09		±0.06±0.05
ATLAS Ij	1	±0.04 ±0.02	0.02 ±0.03	±0.02 ±0.02
CMS lj	10	±0.02 ±0.02		

- Tevatron results already providing significant constraints ... but statistics limited
 - LHC should give precision measurements (in particular for F_R)
 - Ultimate precision will depend on careful control of systematics

Wtb vertex anomalous couplings

- More general parameterisation of Wtb vertex:
- $\mathcal{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_{L}P_{L} + \frac{V_{R}P_{R}}{V_{R}})tW_{\mu}^{-} \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(g_{L}P_{L} + g_{R}P_{R})tW_{\mu}^{-}$ - Anomalous couplings sensitive to ratios $\rho_{L,R} = F_{L,R}/F_{0}$
 - Can also study asymmetries in the cosθ_l^{*} distribution, F_l
 A_{FB}, A₊ and A₋
 - Each asymmetry insensitive to one parameter F_0, F_L, F_R
 - Measure using corrected cosθ^{*}_I distribution in 1 fb⁻¹ of +jet events; statistical and systematic errors:

	ρ_L	ρ_{R}	A _{FB}	A ₊	A_	0.
No	±0.05	±0.008	±0.025	±0.024	±0.012	0.
b-tag	±0.27	±0.017	±0.080	±0.074	±0.021	
b-tag	±0.05	±0.007	±0.026	±0.028	±0.014	-0.
	±0.16	±0.012	±0.033	±0.052	±0.027	-0.2

- B-tagging helps reduce systematic errors
- Combined fit for couplings, may include s/t channel single top

ATLAS

 $V_{L}=1, g_{I}=0$

0.2

68% CL allowed regions

0.1

1 fb⁻

-0.2

1 fb⁻¹ (no b-tag)

Also limits for g_{L} vs g_{R}

-0.1

Top quark rare decays and FCNC

GIM suppressed in the SM Higher BR in some SM extensions

	SM 2HDM		, R∕SUSY
t→qg	4.6x10 ⁻¹²	~10-4	2x10 ⁻⁴
t→qγ	4.6x10 ⁻¹⁴	~10 ⁻⁶	10 ⁻⁶
t→Zq	10 ⁻¹⁴	~10 ⁻⁷	3x10⁻⁵

3 channels studied:

- Kinematics reconstruction (no b-tag)
- Minimize X² by looping on jet/leptons and scanning P_z(neutrino) ¹/_v

$$\chi^{2} = \frac{\left(m_{t}^{FCNC} - m_{t}\right)^{2}}{\sigma_{t}^{2}} + \frac{\left(m_{\ell_{a}\nu j} - m_{t}\right)^{2}}{\sigma_{t}^{2}} + \frac{\left(m_{\ell_{a}\nu} - m_{W}\right)^{2}}{\sigma_{W}^{2}} + \frac{\left(m_{\ell_{b}\ell_{c}} - m_{Z}\right)^{2}}{\sigma_{Z}^{2}}$$

$$m_{t} = 175 \text{ GeV} \qquad m_{W} = 80.42 \text{ GeV} \qquad m_{Z} = 91.19 \text{ GeV}$$

$$\sigma_{L} = 14 \text{ GeV} \qquad \sigma_{W} = 10 \text{ GeV} \qquad \sigma_{Z} = 3 \text{ GeV}$$

Top quark rare decays and FCNC

after final selection: $t\bar{t} \rightarrow bWq\gamma$: total bkg. 650 ± 66 7.6 ± 0.2 signal % $t\bar{t} \rightarrow bWqZ$: total bkg. 125 ± 56 signal % 7.6 ± 0.2 $t\bar{t} \rightarrow bWqg$: total bkg. 19253 ± 359 signal % 2.9 ± 0.1

normalised discriminant variables:

Top quark rare decays and FCNC

expected 95% CL limits:

-1σ	expected	+	1σ	$\widehat{\mathbf{N}}^{-1}$			t t thung an		anni caanii
$t\bar{t} \rightarrow bWq\gamma$:	-			->d	-			V /////	95% C.L. 🛉
3.8×10^{-4}	6.8×10^{-4}	$1.0 \times$	10 ⁻³	$\frac{1}{1} - \frac{1}{1} = \frac{1}{1} $	-	LEP			EXCLUDED
$t\bar{t} \rightarrow bWqZ$:				a_{10}	CDF		<u> </u>	- 200	REGIONS –
1.9×10^{-3}	2.8×10^{-3}	4.2 ×	10 ⁻³						
tt→ bWqg:				10 -2			1		
7.2×10^{-3}	1.2×10^{-2}	$1.8 \times$	10^{-2}	10	ATL	AS (1 fb ⁻	¹)		ZEUS
				-					
_	_	_		10 ⁻³					
systematic ı	uncertain	ties:			-				CDF
source	$t \rightarrow q\gamma$	$t \rightarrow qZ$	$t \rightarrow qg$		_				
jet energy calibratio	on 2%	5%	4%	10	=			:• 🕅	
luminosity	10%	6%	10%		_				ZEUS
top mass	6%	12%	5%		_				(q=u only)
backgrounds σ	7%	12%	15%	-5	-			• 🕅	(630 pb^{-1})
ISR/FSR	17%	7%	9%	10 Ĩ				••	
pile-up	22%	0%	13%		Ŧul I I			¶ +¶+1 KK ≫200	
generator	4%	14%	4%		10 ⁻⁵	10-4	10-3	10^{-2}	10^{-1}
x ²	4%	7%	9%		10	10	10	10	$BR(t \rightarrow av)$
total	32%	25%	27%						21(1 / 91)

Single top

Pre-selection

- 1 high P_T isolated lepton in the central region
- At least 2 jets with $P_T > 30 \text{ GeV}$
- \leq 4 jets with P_T > 15 GeV
- Among those jets, at least one has to be b-tagged
- Missing energy > 20 GeV

Measuring single top production

• Interesting SM measurement and BSM constraint

Entries

Affected by couplings to new particles like W' and H-

 Background (mostly ttbar) brings large uncertainties

ATLAS projections		Δσ/σ (<i>1fb⁻¹</i>)		Δσ/σ (10fb ⁻¹)		
(summa	ary)	stat	syst	stat	syst	BDT
t-channel:	246 pb	6%	22%	2%	10%	Likalihaad
W+top:	66 pb	21%	48%	7%	19%	Likelinoou
s-channel:	11 pb	64%	94%	20%	48%	(CMS: similar 10 fb ⁻¹ results)

V_{tb} from single top (t-channel)

Cut based selection (1 fb⁻¹)

- no additional lepton P_T≥10 GeV
- \leq 4 jets with P_T \geq 15 GeV
- leading light jet |h|>2.5
 efficiency reduced (÷3) to improve tt rejection (x10)

• accepts 1.8% of signal, S/B=0.37

ATLAS: cut-based, 1 fb ⁻¹	
Statistics	5.0%
MC statistics	6.5%
Luminosity	18.3%
b-tagging	18.1%
Jet energy scale	21.6%
other experimental	2.3%
BG cross section	23%
PDF, ISR/FSR, signal model	16.3 %
Total	45%

Vtb from single top (t-channel)

0.6

0.8

BDT output

Summary

Observables	Expected Precision
Top quark charge (2/3 versus -4/3)	\geq 5 σ
Spin Correlations:	
A	50%
$A_{ m D}$	34%
W-boson Polarisation:	
F_0	5%
$F_{ m L}$	12%
F_{R}	0.03
Angular Asymmetries:	
$A_{ m FB}$	19%
A_+	11%
A_{-}	4%
Anomalous Couplings:	
$V_{ m R}$	0.15
$g_{ m L}$	0.07
<i>g</i> _R	0.15
Top quark FCNC decays (95% C.L.):	
$Br(t ightarrow q \gamma)$	10^{-3}
$Br(t \rightarrow qZ)$	10^{-3}
$Br(t \rightarrow qg)$	10^{-2}
<i>tī</i> Resonances (discovery):	
$\sigma \times Br (m_{t\bar{t}} = 700 \text{GeV})$	\geq 11 pb

Summary and outlook

- The LHC 'top factory' offers an excellent opportunity for precision studies of top quark properties
 - Top signal can be identified after few tenths of pb-1
 - With 100 pb-1 cross section can be measured with < 20% precision</p>
 - Studies of top spin correlations and the Wtb vertex require good detector understanding and 1-10 fb⁻¹ to reach maturity
 - With O(1 fb⁻¹), can substantially improve on Tevatron constraints on W polarisation
 - Start to measure more parameters, add in constraints from single top
 - Will need > 1 fb⁻¹ to make unambiguous observation of t-tbar spin correlations
- Most of these studies require full reconstruction of t-tbar
 - Can start to refine techniques, understand resolution and systematics as soon as a significant sample of t-tbar events is recorded and isolated
 - 100-200 pb⁻¹ data is certainly enough to make good progress first year of data will be very valuable

Differential cross section

- Semileptonic decay channel (≥ 4 jets)
- Full least squares fit with MW and Mtop constraints OR simple reconstruction with leptonic W (by MW constraints) plus 4 jets

- Expected mass resolution 5-9% for 200-850 GeV,
- bin size twice the mass resolution

- CDF: 4/3 excluded at 87% CL [CDF note 8967]
- DØ: 4/3 excluded at 92% CL [PRL 98, 041801 (2007)]
- Simple selection: require 2 b-jets
- Need to determine:
- Lepton charge
- Lepton-jet coupling
 ε = 31%, P = 86%
- b-quark charge
- Charge weighting
- Semileptonic b-decay

Charge weighting

1 fb⁻¹ MC truth Full sim Entries 279790 Entries Events / 0.02 140 150 Events / 0.02 ATLAS preliminary AS preliminary Mean 0.1068 ± 0.0006 Mean 0.0949 ± 0.0045 $L = 1 \text{ fb}^{-1}$ $I = 1 \text{ fb}^{-1}$ b-quark charge: 279629 Entries Entries 5545 Mean -0.0984 Mean -0.0804 5000 4000 80 60 40 $Q_{bjet} = \frac{\sum_{i} q_{i} |\vec{j}_{i} \cdot \vec{p}_{i}|^{\kappa}}{\sum_{i} |\vec{j}_{i} \cdot \vec{p}_{i}|^{\kappa}}$ 3000E 1000 20E -0.5 0.5 -0.5 0.5 S/B (trom W+jets) = 50 b jet charge b jet charge $Q_{comb} = Q(I)+Q^{(I)}b-jet = -0.094 \pm 0.0042$ (stat) $Q_t = Q_l + Q_{b-jet} \times C_b = 0.67 \pm 0.06(stat) \pm 0.08 (sys)$ $(C_{\rm b} = Q_{\rm b}^{\rm SM}/Q_{\rm comb} = 3.54 \pm 0.16)$ Entries 12647 ATLAS preliminary Events / 400 Mean 0.6750 ± 0.0126 $L = 1 \text{ fb}^{-1}$

Semileptonic b-decay

 $\bar{\nu}$

C/W⁽⁻¹⁾....

$$b \to ql^-\bar{\nu}, \ \bar{b} \to \bar{q}l^+\nu, \ (q = u, c)$$
$$\bar{Q}_{nonIs} = \frac{N(l^+) - N(\ell^-)}{N(\ell^+) + N(\ell^-)}$$

Charge systematics

Source	Weighting (%)	b-decay (%)
jet scale	0.7	0.3
b-jet scale	1.9	6
$\Delta m_{\rm t}$	1.3	7
PDF	0.6	_
ISR	2.8	15
FSR	7.8	8
Pile-up	—	1.8
Background asymmetry	1	-
S/B ratio	9	-
total	12.5	19.3

ATLAS will be able to distinguish both charge hypotheses with a signicance above 5 for 1 fb⁻¹ of data

Data overview

ATLAS then went into a sustained cosmic-ray data taking campaign

Run number 37

	Likeliho	od fit	Counting	g method (elec)
Source	Electron	Muon	Default	W const.
Statistical	10.5	8.0	2.7	3.5
Lepton ID efficiency	1.0	1.0	1.0	1.0
Lepton trigger efficiency	1.0	1.0	1.0	1.0
50% more W+jets	1.0	0.6	14.7	9.5
20% more W+jets	0.3	0.3	5.9	3.8
Jet Energy Scale (5%)	2.3	0.9	13.3	9.7
PDFs	2.5	2.2	2.3	2.5
ISR/FSR	8.9	8.9	10.6	8.9
Shape of fit function	14.0	10.4	-	-

tt is fairly easy to trigger on

Sample of tt semileptonic with $W \rightarrow e_V$

Relative to offline analysis selection

ATLAS

Trigger	Compared to Monte Carlo	Compared to offline selection
inggei	Eff. [%]	Eff. [%]
<u>e22i:</u>		
L1 EM18I	74.7 ± 0.5	96.0 ± 0.6
L2 e22i	59.6 ± 0.6	92.7 ± 0.9
EF e22i	52.9 ± 0.6	89.8 ± 1.0
<u>e12i:</u>		
L1 EM7I	83.6 ± 0.4	98.6 ± 0.3
L2 e12i	66.7 ± 0.5	92.6 ± 0.8
EF e12i	63.5 ± 0.5	91.8 ± 0.8

Main ref. here and below: ATLAS: CERN-OPEN-2008-20

Selection cuts:

•> 1 electron, p_T > 20 GeV

•> 3 Jets w/ p_T>40 GeV

> 4 Jets w/ p_T >20 GeV

Light jet energy scale

Motivation

- tt → lepton + jets can be used to select an unbiased sample of W→ jet jet
- m_w constraint \rightarrow light jet energy scale

Light jet energy scale

Tight selection

- •Exactly one isol. lepton, $p_T > 20 \text{ GeV}$
- •E_{T,miss} > 20 GeV
- •Exactly 4 jets, $p_T > 40 \text{ GeV}$
- •Exactly 2 jets tagged as b-jets
- \rightarrow W purity ~ 80%

Motivation

- tt → lepton + jets can be used to select an unbiased sample of W→ jet jet
- m_W constraint \rightarrow light jet energy scale

Light jet energy scale

- Iterative re-scaling of E_{jet} in bins of E_{jet} and η to get $M_{W,PDG}$
 - Precision of ~ 2% for 1 fb⁻¹

- Iterative re-scaling of E_{jet} in bins of E_{jet} and η to get $M_{W,PDG}$
 - Precision of ~ 2% for 1 fb⁻¹
- Fit template distributions with energy scale α / resolution β
 - Precision of ~ 1% for 1 fb⁻¹ for overall scale

- Iterative re-scaling of E_{jet} in bins of E_{jet} and η to get $M_{W,PDG}$
 - Precision of ~ 2% for 1 fb⁻¹
- Fit template distributions with energy scale α / resolution β
 - Precision of ~ 1% for 1 fb⁻¹ for overall scale

Select b-enriched samples using tt sample

Select b-enriched samples using tt sample

- Select b-enriched samples using tt sample
- Golden channel: 2 b-jets, 2 W daughters

- Select b-enriched samples using tt sample
- Golden channel: 2 b-jets, 2 W daughters

- Select b-enriched samples using tt sample
- Golden channel: 2 b-jets, 2 W daughters
- b-jets determine b-tag efficiency $\varepsilon_{b:}$
 - Global $\epsilon_{\text{b:}}$ from fit to Ntag distribution
 - Also determines $\epsilon_{\rm c}\, \text{and}\,\, \sigma \text{tt}$
 - − $\Delta \varepsilon_{b:/} \varepsilon_{b} \sim (2.7 \text{ (stat)+3.4 (syst)})\%$

Year						2009	Э										20	010						_		
Month	F	М	А	М	J	J	А	S	0	Ν	D	J	F	м	А	М	J	J	А	S	0	N	D	J	F	м
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	H	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH

Typical Run/Shutdown setup Would leave little time for running in 2009 Delay may mean no running before autumn 2010!

Year						2009	Э										20	010						_		
Month	F	М	Α	М	J	J	А	S	0	Ν	D	J	F	м	А	М	J	J	Α	S	0	N	D	J	F	М
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	ł	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH

Typical Run/Shutdown setup Would leave little time for running in 2009 Delay may mean no running before autumn 2010!

Decisions taken

- Physics run as soon as possible
- Do not warm up all sectors
- Top energy is 5 TeV (had been reached for all other sectors)
- No winter shutdown 2009/10

Year						2009	9										20	010						_		
Month	F	М	А	М	J	J	А	S	0	Ν	D	J	F	М	А	М	J	J	А	S	0	Ν	D	J	F	м
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	Н	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH

Typical Run/Shutdown setup Would leave little time for running in 2009 Delay may mean no running before autumn 2010!

- Decisions taken
 - Physics run as soon as possible
 - Do not warm up all sectors
 - Top energy is 5 TeV (had been reached for all other sectors)
 - No winter shutdown 2009/10

Consequences

Year						2009	Э										20	010								
Month	F	М	А	М	J	J	А	S	0	Ν	D	J	F	м	А	М	J	J	А	S	0	N	D	J	F	м
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	H	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH

Typical Run/Shutdown setup Would leave little time for running in 2009 Delay may mean no running before autumn 2010!

- Decisions taken
 - Physics run as soon as possible
 - Do not warm up all sectors
 - Top energy is 5 TeV (had been reached for all other sectors)
 - No winter shutdown 2009/10

- Consequences
- 8 M Euro additional electricity cost

Year						2009	Э										20	010								
Month	F	М	А	М	J	J	А	S	0	Ν	D	J	F	м	А	М	J	J	А	S	0	N	D	J	F	м
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	H	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH

Typical Run/Shutdown setup Would leave little time for running in 2009 Delay may mean no running before autumn 2010!

- Decisions taken
 - Physics run as soon as possible
 - Do not warm up all sectors
 - Top energy is 5 TeV (had been reached for all other sectors)
 - No winter shutdown 2009/10

- Consequences
- 8 M Euro additional electricity cost
- Gain 20 weeks of physics running

Year						2009	Э										20	010								
Month	F	М	А	М	J	J	А	S	0	Ν	D	J	F	м	А	М	J	J	Α	S	0	N	D	J	F	м
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	Н	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH

Typical Run/Shutdown setup Would leave little time for running in 2009 Delay may mean no running before autumn 2010!

Decisions taken

- Physics run as soon as possible
- Do not warm up all sectors
- Top energy is 5 TeV (had been reached for all other sectors)
- No winter shutdown 2009/10

• Consequences

- 8 M Euro additional electricity cost
- Gain 20 weeks of physics running
- Further delays of a few weeks have small impact on physics 09/10

Year						2009	Э										20	010								
Month	F	М	А	М	J	J	А	S	0	Ν	Þ	J	F	м	А	М	J	J	А	S	0	Ν	D	J	F	м
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	H	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH

Typical Run/Shutdown setup Would leave little time for running in 2009 Delay may mean no running before autumn 2010!

Decisions taken

- Physics run as soon as possible
- Do not warm up all sectors
- Top energy is 5 TeV (had been reached for all other sectors)
- No winter shutdown 2009/10

• Consequences

- 8 M Euro additional electricity cost
- Gain 20 weeks of physics running
- Further delays of a few weeks have small impact on physics 09/10
- Enough data to compete with Tevatron in many areas by end of 2009/10 run

Good signs! Pixel alignment

An example of using cosmic-ray data for detector alignment

