Aperture and protection tolerance for the injection into LHC

F.M. Velotti, <u>C. Bracco</u>, W. Bartmann, B. Goddard, M. Meddahi, V. Kain, J. Uythoven...all LIBD WG and thanks to: R. Bruce, R. De Maria, M. Giovannozzi, S. Redaelli

Outline

```
Introduction
```

LHC Injection System Injection protection devices New TDI-S Optics

Injection Failures Simulations

Assumptions

Beam 1

Beam 2

Halo Escaping - Vertical plane

Halo Escaping - Horizontal plane

Summary and Conclusion

The LHC injection system is composed by:

► horizontal septum - MSI;

The LHC injection system is composed by:

- horizontal septum MSI;
- ► quadrupole Q5;

The LHC injection system is composed by:

- ► horizontal septum MSI;
- ► quadrupole Q5;
- vertical kicker MKI;

The LHC injection system is composed by:

- ► horizontal septum MSI;
- ▶ quadrupole Q5;
- vertical kicker MKI;
- ▶ protection devices TDI, TCLIA/B, TCDD.

Injection protection devices

TDI:

- ► ~ 4 m long;
- 2 vertical jaws;
- ▶ nominal half gap: 6.8 σ ;
- protection against MKI failures.

TDI:

- ► ~ 4 m long;
- 2 vertical jaws;
- ▶ nominal half gap: 6.8σ ;
- protection against MKI failures.

TCLIA/B:

- ► 1 m;
- ► 2 vertical jaws;
- ▶ nominal half gap: $6.8/8.3 \sigma$;
- protection against phase-advance errors between MKI and TDI.

► For HL-LHC a new TDI is foreseen to be installed;

- ► For HL-LHC a new TDI is foreseen to be installed:
 - ► to date, the most likely design foresees:
 - ► 3 separate blocks: 2 of graphite (R4550 or similar) and 1 block of higher Z material (the following simulations have been done assuming aluminium);

- ▶ For HL-LHC a new TDI is foreseen to be installed;
- ▶ to date, the most likely design foresees:
 - 3 separate blocks: 2 of graphite (R4550 or similar) and 1 block of higher Z material (the following simulations have been done assuming aluminium);
- ▶ the last block has 2 mm larger aperture than the others.

Optics

► Optics HLLHC v1.1 used for simulations;

Optics

- ► Optics HLLHC v1.1 used for simulations;
- basically no differences between HLLHC v1.1 and the present optics (runll);

Optics

- Optics HLLHC v1.1 used for simulations;
- basically no differences between HLLHC v1.1 and the present optics (runll);
- also crossing and separation schemes in both IR2 and IR8 almost unchanged.

► The MKI deflects the injected beam onto the nominal LHC orbit \rightarrow it has been assumed $\theta = 0.85$ mrad;

- ► The MKI deflects the injected beam onto the nominal LHC orbit \rightarrow it has been assumed $\theta = 0.85$ mrad;
- ► MKI failures can of course affect both injected and circulating beam:
 - for the injected beam, the MKI strength can be considered between 0 and 125% (where 100% is nominal);
 - ▶ for the circulating beam, the MKI strength can be considered between 0 (nominal) and 100%;
 - ► above 100% (for the circulating beam) it becomes double failure → this is considered beyond design;

- ► The MKI deflects the injected beam onto the nominal LHC orbit \rightarrow it has been assumed $\theta = 0.85$ mrad;
- MKI failures can of course affect both injected and circulating beam:
 - for the injected beam, the MKI strength can be considered between 0 and 125% (where 100% is nominal);
 - for the circulating beam, the MKI strength can be considered between 0 (nominal) and 100%;
 - above 100% (for the circulating beam) it becomes double failure → this is considered beyond design;
- ▶ above |20|% the impact parameter onto the TDI is above 5σ hence almost the whole beam will be lost on the TDI.

- ► The following studies are done using:
 - ► MKI strength of $\sim 11\%$ of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ► MKI strength of $\sim 9.5\%$ of the nominal for B2 \Rightarrow grazing (zero impact parameter);

- ► The following studies are done using:
 - MKI strength of ~ 11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ► MKI strength of $\sim 9.5\%$ of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);

- ► The following studies are done using:
 - ► MKI strength of $\sim 11\%$ of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ► MKI strength of $\sim 9.5\%$ of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - ► tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - ► Normalised emittance used $\Rightarrow \epsilon_{x,y}^N = 1.37 \text{ } \pi\text{mm.mrad};$

- ► The following studies are done using:
 - ► MKI strength of $\sim 11\%$ of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ► MKI strength of $\sim 9.5\%$ of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - ► tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - ► Normalised emittance used $\Rightarrow \epsilon_{x,y}^N = 1.37 \ \pi \text{mm.mrad};$
 - ► TDI-S, TCLIA and TCLIB nominal half-gaps $6.8\sigma_v \Rightarrow$ scenario 0;

- ► The following studies are done using:
 - ► MKI strength of ~ 11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ► MKI strength of $\sim 9.5\%$ of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - ► tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - ► Normalised emittance used $\Rightarrow \epsilon_{x,y}^N = 1.37 \ \pi \text{mm.mrad};$
 - ► TDI-S, TCLIA and TCLIB nominal half-gaps $6.8\sigma_V \Rightarrow$ scenario 0;
 - ► TDI-S half-gap of $7.8\sigma_v$ and TCLIA/B with half-gap of $6.8\sigma_v \Rightarrow$ scenario 1;

- ► The following studies are done using:
 - ► MKI strength of ~ 11% of the nominal for B1 \Rightarrow grazing (zero impact parameter);
 - ► MKI strength of $\sim 9.5\%$ of the nominal for B2 \Rightarrow grazing (zero impact parameter);
 - ► tracking of the primaries done using MADX + pycollimate (IPAC15 for more details);
 - ► Normalised emittance used $\Rightarrow \epsilon_{x,y}^N = 1.37 \ \pi \text{mm.mrad};$
 - ► TDI-S, TCLIA and TCLIB nominal half-gaps $6.8\sigma_V \Rightarrow$ scenario 0;
 - ► TDI-S half-gap of 7.8 σ_V and TCLIA/B with half-gap of 6.8 σ_V \Rightarrow scenario 1;
 - ► TDI-S, TCLIA and TCLIB half-gaps $7.8\sigma_V$ \Rightarrow scenario 2;

Scenario 0

- ► TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- ► TDI-S at 7.8 σ_y , TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

- ► TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- ► tracking for 1 turn:

Scenario 0

- TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- ► TDI-S at 7.8 σ_y , TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- ► tracking for 1 turn:

- ► TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- ► tracking for 1

Scenario 0

- ► TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- ► TDI-S at 7.8 σ_y , TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

- ► TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- ► tracking for 1 turn:

Loss maps at injection - Beam 2

Scenario 0

- ► TDI-S, TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

Scenario 1

- ► TDI-S at 7.8 σ_y , TCLIA and TCLIB at 6.8 σ_y and grazing impact on the TDI-S
- tracking for 1 turn:

- ► TDI-S, TCLIA and TCLIB at 7.8 σ_y and 1 σ impact on the TDI-S
- tracking for 1 turn:

Halo Escaping - Vertical plane

- The halo escaping the injection protection system can be calculated with the survival function;
- ► macro particles tracked 2 × 10⁵, normalised to the beam intensity I = 288 × 2.2 × 10¹¹ p⁺;
- the max amplitude escaping the protection system with intensity above safe flag beam (5 × 10¹¹ p⁺) is 7 σ (for the vertical plane);
- $Y/\sigma_y = \sqrt{y^2 + (\alpha_y y + \beta_y y')^2} / \sqrt{\epsilon \beta_y}.$

Halo Escaping - Horizontal plane

- The maximum error we can have at the TCDIs is estimated to be 1.4 σ;
- the maximum amplitude escaping the TCDIs is $g_{TCDI}/\cos(\Delta\psi/2)$ (without intercepting the TCDIs);
- with a 5 σ oscillation in the line, for a very unlucky phase, the beam core ($\sim \pm 1 \ \sigma$) could escape the TL collimation system completely;
- maximum amplitude escaping the TL collimators with intensity above safe beam flag is 7.4 σ_x.

Halo Escaping - Horizontal plane

- The maximum error we can have at the TCDIs is estimated to be 1.4 σ;
- the maximum amplitude escaping the TCDIs is $g_{TCDI}/\cos(\Delta\psi/2)$ (without intercepting the TCDIs);
- with a 5 σ oscillation in the line, for a very unlucky phase, the beam core ($\sim \pm 1 \ \sigma$) could escape the TL collimation system completely;
- maximum amplitude escaping the TL collimators with intensity above safe beam flag is 7.4 σ_x.

Summary and Conclusion

- ► The maximum primary halo amplitude escaping the injection protection system, in case of MKI failure (kick of 6.8 σ at the TDI) and with intensity above the safe beam flag, is 7 σ_y ;
- ▶ for the horizontal plane, the only protection is given by the TCDIs (injection protection elements are only vertical) \Rightarrow the primary halo with intensity above the safe beam flag is 7.4 σ_{\times} (\Rightarrow to compare with 9.07 σ);
- the tolerances that should be included, in order to consider realistic machine configurations, are:
 - ▶ $1.5 + 1.5 \sigma$ for orbit and injection oscillations;
 - ► 10% of beta-beat:
 - $\delta_D = 0.6 \times 10^{-3}$ and $k_D = 1.4$.
- ▶ this gives a total of 10.3 σ_y and 11.05 σ_x (\Rightarrow to compare with 12.3 σ) for the vertical and horizontal plane respectively.

Summary and Conclusion

- ► The current settings of the injection protection elements guarantee the localisation of the losses in case of MKI failures in the injection regions;
- different settings would move the losses elsewhere in the machine (e.g. IR7);
- the present TCDI settings permit to achieve the required protection;

Outlook:

- ▶ due to the large part of the beam surviving the first turn (~50%) the tracking has been extended;
- this will translate in higher load on some of the collimators (TCLIB especially);
- evaluation with simulations the different possible settings of TCLIB.

Thank you!

Backup

