

Overview on Radio Detection of Air Showers with focus on LOPES, Tunka-Rex, and AERA

Frank G. Schröder

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

Outline

- Properties of the radio signal
 - amplitude: footprint and scale
 - polarization
 - wavefront
- Reconstruction of air-shower parameters
 - direction
 - energy
 - X_{max}

Scientific applications

highest potential for inclined showers and in combination with particle detectors

Advantages of radio technique

- Accurate measurement of direction, electro-mag. energy + X_{max} around the clock
- Energy range of highest-energy galactic CR + extragalactic CR

3 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

08 June 2016 ARENA 2016, Groningen

4

Overview on Radio Detection of Air Shower

5 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Arrays in Focus of this talk

.

.

. . .

• • • • • AERA (153)

.

frank.schroeder@kit.edu Institut für Kernphysik

.

Overview on Radio Detection of Air Shower

1 km

-OPES (30)

08 June 2016 ARENA 2016, Groningen

6

Detectors: antennas

Many working solutions with only slight differences in

- threshold (typical 10¹⁷ eV) and frequency band (typical 30-80 MHz)
- accuracy (systematic uncertainties, e.g., due to ground conditions)

7 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

LOPES setup (map of 2009)

- 30 dipole antennas
 - 40 80 MHz, east-west / north-south
- Trigger by KASCADE

8

Emission mechanisms

9 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Conical radio emission with asymmetric footprint

CoREAS simulations

By T. Huege et al., ARENA2012

10 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Do simulations describe reality?

CoREAS (+ other codes) reproduce measured amplitudes within ~20% uncertainty

11 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Relative strength of Askaryan effect

12 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Slightly elliptical polarization

13 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

ARENA2012

T. Huege,

14 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Cone angle depends on distance to shower maximum

15 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Reconstruction of shower parameters

- Direction
 - example: LOPES
- Energy
 - examples: AERA, LOPES, Tunka-Rex

Shower maximum

examples: Tunka-Rex (for LOFAR + AERA see other talks)

Interferometric beamforming at LOPES

Cross-correlation of traces after time shift according to arrival direction
Direction precision < 0.7° (by comparing LOPES to KASCADE)

17 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Energy reconstruction by AERA

Total energy in radio signal scales quadratically with electro-mag. shower energy

18 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Similar energy precision by LOPES + Tunka-Rex

19 08 June 2016 ARENA 2016, Groningen

Overview on Radio Detection of Air Shower

20 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

21 08 June 2016 ARENA 2016, Groningen Overview on Radio Detection of Air Shower

Some future applications for radio

Calorimetric, absolute energy measurement

- cross-calibration of cosmic-ray energy scale
- Shower maximum with almost 100 % duty cycle
 - radio = useful extension for any particle detector array
- Radio is ideal for inclined showers
 - huge footprint and no absorption
- Additional mass sensitivity in hybrid measurements
 - electron / muon approach \rightarrow radio + particle detectors

Huge footprint for inclined showers

Enables large-scale, sparse antenna arrays for reasonable costs

23 08 June 2016 ARENA 2016, Groningen

Overview on Radio Detection of Air Shower

Composition sensitivity for inclined showers

Only radio emission + muons survive for inclined showers

Complementary information on shower \rightarrow primary particle type

Overview on Radio Detection of Air Shower

Conclusion

- Properties of the radio signal
 - amplitude understood to a 10 20% level
 - other features barely tested: wavefront, polarization, pulse shape
 - required: more accurate calibration + more tests
- Reconstruction of air-shower parameters
 - direction < 0.7°, energy < 15 20%, X_{max} < 20 g/cm²
 - energy accuracy limited by calibration
 - X_{max} limited by methods?

Scientific applications

- plenty of applications, not just mass-composition
- radio essential for the accuracy-age of cosmic-ray physics