

In-situ absolute calibration of electric-field amplitude measurements with the radio detector stations of the Pierre Auger Observatory

Florian Briechle for the Pierre Auger Collaboration

SPONSORED BY THE

Federal Ministry of Education and Research

The Auger Engineering Radio Array

- 153 radio stations on 17 km²
- Two different station types
 - Log-periodic dipole antenna (LPDA)
 - Butterfly
- Two polarizations
- Sensitive in the range of 30 – 80 MHz
- Precise energy measurements of cosmic rays only possible with high accuracy calibration

LPDA

Butterfly

Independent Determination of Cosmic-Ray Energy Scale

Octocopter

- power: 6600 mAh Lipo 13-16 V
- Payload: ~2000 g
- Mass: 2545 g (including 715g accumulator)
- flight time: 25 min/ 7 min (without/with payload)
- barometer → elevation
- gyroscope → inclination
- acceleration sensor → angular speed
- GPS \rightarrow position

Field Measurements

Setup of Antenna Response Calibration

GPS Measurement of Octocopter Position

- Octocopter placed on ground and left running for ~40 minutes
- 60 cm statistical uncertainty
- GPS offset uncertain on the order of few meters

Position Reconstruction Using Two Cameras

- two 16 Megapixel standard digital cameras
- placed at orthogonal axes
- ~100 m distance to reference point
- take pictures every 3 seconds

Camera 1

Optical Method \leftrightarrow **Differential GPS (DGPS): x-y plane**

- DGPS accurate < 10 cm
- Offset of ~1 m in x-y plane between optical method and DGPS
- Resolution optical method: 1.5 m

Picture reco data

Optical Method \leftrightarrow **Differential GPS (DGPS): height**

- 6 cm offset between DGPS and optical reconstruction
- For calibration flights no DGPS available, only GPS + barometer and optical reconstruction

GPS + Barometer Correction by Optical Method

- Optical reconstruction has smaller systematical but larger statistical uncertainties than GPS + barometer
 - Use GPS + barometer, correct by using optical reconstruction
- x-y plane: Shift by absolute offset
- Height: Shift by relative factor

Horizontal Polarization – Example Flight

Florian Briechle | briechle@physik.rwth-aachen.de

Horizontal Polarization - Reproducibility

- Performed several flights
- All agree on a level of 10 %
- Uncertainties:
 - Bars: Statistical (4.4 % for 55 MHz at 45°)
 - Color bands: Systematic (8.1 % for 55 MHz at 45°)
 - Dominated by spectrum analyzer
 - Significant improvement to previous calibrations (~12.5 %)

Horizontal Polarization – Comparison with Simulation

- Simulation and Measurement agree
- For the most part within uncertainties

Correction Factors for Simulation

Use Simulation with applied correction factor

Vertical Polarizations

Vertical-horizontal

Vertical-vertical

Combination

Summary and Outlook

- Calibration important for reconstructing cosmic rays
 - Vector Effective Length of the LPDA stations measured using an octocopter
- Special focus on position reconstruction
 - New optical method
- VEL has been measured with preliminary uncertainties of 8.1% (sys.) + 4.4% (stat.)
- Crucial component in determination of independent cosmic-ray energy scale from radio measurement
 - Publication in preparation

Influence of Ground

- Ground conditions influence Vector Effective Length
 - Influence is within systematic uncertainties

Reconstruction Workflow

- determine Pixel tuple of Octocopter and Point of Reference from Pictures
 - → "Template Matching"
- apply corrections for skewness of horizon
- linear interpolation between pictures to get a pixel tuple for every second of flight

Reconstruction Workflow

- transform pixel tuple to direction vector
 - calibration in the lab
- calculate geometry

Vector Effective Length

H: relation of voltage to incoming e-field

horizontal antenna most sensitive to zenith direction

Reference Spectrum Generator (RSG)

dimensions (W/H/D) in cm: 6/6/17.5 weight: ~580g frequency range: 1 - 1000 MHzcomb spacing: 1, 5 or 10 MHz max power: ~ $97dB\mu V = -10dBm$