Search for Cosmic Particles With the Moon and LOFAR

Tobias Winchen
for the LOFAR Cosmic Ray Key Science Project

tobias.winchen@vub.ac.be
The LOw Frequency ARray

- Fully digital radio telescope
- 48 Stations throughout Europe
- Dense core of 24 stations in the Netherlands
The LOw Frequency ARray

- 24 Core stations
 - 96 Low-Band (10 – 90 MHz) antennas
 - 768 High-Band (110 – 240 MHz) antennas

LBA antennas

HBA tiles of 4x4 antennas
Observation Strategy

- HBA Antennas have optimal frequency range
- Form multiple beams on the Moon
- Search for ns pulses in time-series
- Anti coincidence to suppress RFI
- Analyze Faraday rotation and dispersion to check lunar origin

Challenges

- Data rate 0.8 GiB/s per station/beam
 → Trigger required
- LOFAR designed to integrate flux
 - Reconstruct time series from filtered signal for trigger
 - Use buffered traces for analysis
Online Data Analysis

Station
- HBA Antennas
- ADC
- Polyphase Filter
- Station Beamformer
- Select Subbands
- Dump Buffers

Computing Cluster
- Tied Array Beam
- Invert Poly. Filter
- Ion. Dedispersion
- Trigger Logic

Requirements:
- Real time
- Trigger within 5s

blocks of subband spectra 24x6.2 Gbit/s
Signal Filtering @ LOFAR

- Decompose signal into subbands
- Example signal 16,184 samples
 - White noise
 - Transmitter: 123.42 MHz
 - Sampling freq. 200MHz
- FFT signal is smeared out over neighboring frequencies
- Efficient filtering with PPF
 + avoids smearing
 - Reduces time resolution from 5 ns to ~5 us
Polyphase Filter

1. Matrix product
\[Hx = y \]

2. Fourier transformation
\[\mathcal{F}(y) = \tilde{y} \]
Inverse Polyphase Filter (PPF\(^{-1}\))

\[
\mathcal{F}^{-1}(\tilde{y}) = y
\]

- Direct inversion of FIR filter
 \[
 H^{-1}y = \hat{x}
 \]

 Inverse does not exists as H is not square

- Approximate inverse
 \[
 Gy \approx \hat{x} \quad GH \approx I
 \]

 Supposed to be numerically unstable / produces artifacts (spikes)

- Robust approach: Solve linear system
 \[
 H\hat{x} = y
 \]

 using iterative least least squares (LSMR)

 \[
 \min_{\hat{x}} \|H\hat{x} - y\|
 \]
PPF⁻¹ Example

Input: White Noise + Pulses

Reconstructed Signal
Accuracy of PPF Inversion

→ Almost perfect inversion of PPF possible:
 Numeric noise with spikes at ~ 30% of noise level
 Uncorrelated with pulse position

Tobias Winchen - Search for Cosmic Particles With The Moon
Performance Prototype Pipeline

- Beamforming << Realtime (CPU)
- Dedispersion << Realtime (GPU)
- PPF Synthesis 160% Realtime (GPU)

Prototype implementation on Nijmegen cluster
CPU: Xeon-2660 (2012)
GPU: M2090
DRAGNET Cluster

- **Designed for Pulsar searches** (J. Hessels et al.)
 - 23 worker nodes
 - 16 CPU cores (2x Xeon E5-2630v3 (2014))
 - 128 GiB ram
 - 4x TitanX GPU
 - 56 Gbit/s Infiniband connection to LOFAR
 - = 92 High-End GPUs + CPUs ; 0.5 PetaFLOPs

- **Estimate based on prototype implementation:**
 - 2 beams per node,
 - Computing power allows 46 beams total:
 - Full coverage of the moon with .1 deg beams possible
Sensitivity Optimization

COSMIC RAYS

$E^2 J(E) \text{ [km}^{-2} \text{ yr}^{-1} \text{ sr}^{-1} \text{ eV}^{-1}]$

7d LOFAR
Auger 2015
Telescope Array 2013

NEUTRINOS

$E^2 J(E) \text{ [km}^{-2} \text{ yr}^{-1} \text{ sr}^{-1} \text{ eV}^{-1}]$

Auger 2015
IceCube 2013
Anita 2012
WSRT 2014
LOFAR

PRELIMINARY
Sensitivity Optimization

COSMIC RAYS

- **Energy Threshold:**
 - Number of Stations
 - Shape of beams
 - ...

- **Sensitivity:**
 - Number of Beams
 - Observation Time
 - ...

NEUTRINOS

- **Energy Threshold:**
 - Number of Stations
 - Shape of beams
 - ...

- **Sensitivity:**
 - Number of Beams
 - Observation Time
 - ...

![Graphs showing sensitivity of cosmic rays and neutrinos](image.png)
Conclusions

- LOFAR High-Band antennas optimal for lunar Askaryan
- Online analysis requires inversion of polyphase filter
 - Inverse almost perfect: Regular spikes at ~30% noise level
 - Computationally expensive
- DRAGNET GPU/CPU cluster available
- First test-run in preparation
- Next talk by Sander ter Veen:
 - Trigger strategies, TEC measurements, offline processing, ...
Backup
LOFAR Network

Core Station 1
... 10 Gbit/s
Core Station 24

10 Gbit/s

10 Gbit/s

COBALT

Infiniband 56 Gbit/s

Ethernet 10 Gbit/s

DRAGNET

Infiniband 56 Gbit/s

Ethernet 10 Gbit/s

Worker Node 1
Worker Node ...
Worker Node 23

Port 1 Gbit/s

Process. Node

Head Node

Portal
2 Step Online Processing

- COBALT Cluster
 - Tied Array Beam
 - ~5 `Proto' Beams
 - Full-Moon
 - 31 Gbit/s

- DRAGNET Cluster
 - 46 Tied Array Beams
 - PPF Synthesis
 - Ion. Dedispersion
 - Trigger Logic

Requirements:
- Real time
- Latency < 5s

blocks of subband spectra 24x6.2 Gbit/s
Pulse Reflected at High Frequencies

- Radiation emitted in Cherenkov cone
- Cherenkov angle == Angle of total reflection
- Upgoing shower required / rely on surface roughness
Pulse Escapes at Low Frequencies

- Cherenkov cone is broader at low frequencies
- Also downgoing showers detectable
- Optimum in 100 - 200 MHz range (Scholten et al. 2006)
Dispersion

- Frequency dependent time delay of pulse due to free electrons in ionosphere

\[\Delta t(\nu) = 1.34 \frac{STEC}{TECU} \left(\frac{\nu}{\text{Hz}} \right)^{-2} \text{ s} \]

STEC: Standard electr. content

1 TECU = 10^{16} electrons / m2

- Typical values 5 - 100 TECU
 > 500 ns delay between 100 MHz and 200 MHz
Dedispersion

Recovery of 99% of amplitude possible
PPF results in 30% fluctuations with small TEC values → need to scan multiple TEC values