

Florian Gaté

Subatech, Nantes for the Pierre Auger Collaboration

Motivations

Motivations

Motivations

Motivations

radio signal now well understood and antenna duty cycle ~100%

Motivations

radio signal now well understood and antenna duty cycle ~100%

use the radio measurement to estimate the composition with a larger number of events

Xmax measurement = mass estimator

Amplitude based methods

Comparison of simulated electric field to data

Method	Α	В	С	D
model	SELFAS Astropart. Phys. 35 (2012) 733 – 741	2D gaussian Astropart. Phys. 60 (2015) 13	CoREAS AIP Conf. Proc. (2013) 128– 132	ZHAireS horizontal components Astropart. Phys. 59 (2014) 29
requirements	RD arrival direction	RD arrival direction	SD arrival direction SD energy	SD core (initialization) SD energy
# of simulations per event	40 p + 10 Fe	no simulation	20 p + 10 Fe	30 p + 30 Fe

Amplitude based methods

Comparison of reconstructed Xmax with FD measurements.

- But the total number of events varies slightly from one method to another.
 - Reasons are:

event characteristics (Ep, A, Xmax) not reproducible (interaction model dependent)

a method will produce degenerate Xmax solutions (simulation code / antennas pattern dependent)

Interpolation:

Auger Engineering Radio Array

ubatech

 $(\chi^2, X_{\rm max})$ of all simulations gives Xmax estimation

Method applied on high quality RD - FD events

FD quality cuts:

- Xmax in field of view
- σ_{Xmax} < 40 g/cm²
- reduced χ^2 for the Gaisser Hillas fit below set value

great confidence in FD Xmax measurements

Method applied on high quality Rd - Fd events

Method applied on high quality Rd - Fd events

systematic shift

- pure radio
- good precision
- gives all parameters

2D gaussian parameterization

$$u(\vec{r}) = A \left[\exp\left(\frac{-(\vec{r} + C_1 \vec{e}_{\vec{v} \times \vec{b}} - \vec{r}_{\text{core}})}{\sigma^2}\right) - C_0 \exp\left(\frac{-(\vec{r} + C_2 \vec{e}_{\vec{v} \times \vec{b}} - \vec{r}_{\text{core}})}{(C_3 e^{C_4 \sigma})^2}\right) \right]$$

2D gaussian parameterization

$$u(\vec{r}) = A \left[\exp\left(\frac{-(\vec{r} + C_1 \vec{e}_{\vec{v} \times \vec{b}} - \vec{r}_{\text{core}})}{\sigma^2}\right) - C_0 \exp\left(\frac{-(\vec{r} + C_2 \vec{e}_{\vec{v} \times \vec{b}} - \vec{r}_{\text{core}})}{(C_3 e^{C_4 \sigma})^2}\right) \right]$$

 $D_{\max}^{\text{geo}}(X_{\max}, \theta) = (h_{\text{GDAS}}(X_{\max}/\cos\theta) - h_{\text{Auger}})/\cos\theta$

2D gaussian parameterization

Method applied on high quality Rd - Fd events

CoREAS + energy density interpolation

ubatech

CoREAS + energy density interpolation

CoREAS + energy density interpolation

Method applied on high quality Rd - Fd events

needs SD information

and a lot of time

- very good agreement
- good precision

florian.gate@subatech.in2p3.fr 32

1200

Only a few positions along a single direction w.r.t. the core: Very Fast! Superposition model used instead of interpolation.

D
ZHAireS horizontal components Astropart. Phys. 59 (2014) 29
SD core (initialization) SD energy
30 p + 30 Fe

Only a few positions along a single direction w.r.t. the core: Very Fast! Superposition model used instead of interpolation.

Astropar. Phys. 59, 29, 2014

Superposition model:

Amplitudes of Askaryan & geomagnetic emissions are circularly symmetric in the transverse plan of the shower

florian.gate@subatech.in2p3.fr 35

|Ḗ| (V/m) ×10⁻³

0.14

0.12

0.1

0.08

0.06

0.04

0.02

1000 0

East

Method applied on high quality Rd - Fd events

needs SD information

- good agreement
- good precision
- very fast

<u>Conclusions</u>

Method	Α	В	С	D
model	SELFAS Astropart. Phys. 35 (2012) 733 – 741	2D gaussian Astropart. Phys. 60 (2015) 13	CoREAS AIP Conf. Proc. (2013) 128– 132	ZHAireS horizontal components Astropart. Phys. 59 (2014) 29
requirements	RD arrival direction	RD arrival direction	SD arrival direction SD energy	SD core (initialization) SD energy
Xmax Rd - Fd distribution	mean = 43.6 g/cm ² σ = 43.4 g/cm ²	mean = -12 g/cm ² σ = 59.3 g/cm ²	mean = 4.4 g/cm ² σ = 47 g/cm ²	mean = 13.4 g/cm ² σ = 41.3 g/cm ²
outputs	Core position Energy Xmax	Core position Energy Xmax	Core position Xmax	Core position Xmax
simulation duration	~ 8 hours		~1 week	~1 hour

Combine strengths: • Pure radio method (A, B)

• Fast (B, D)

- Good agreement (C)
- Good precision (A, C, D)

<u>Conclusions</u>

Method	Α	В	С	D
model	SELFAS Astropart. Phys. 35 (2012) 733 – 741	2D gaussian Astropart. Phys. 60 (2015) 13	CoREAS AIP Conf. Proc. (2013) 128– 132	ZHAireS horizontal components Astropart. Phys. 59 (2014) 29
requirements	RD arrival direction	RD arrival direction	SD arrival direction SD energy	SD core (initialization) SD energy
Xmax Rd - Fd distribution	mean = 43.6 g/cm ² σ = 43.4 g/cm ²	mean = -12 g/cm ² σ = 59.3 g/cm ²	mean = 4.4 g/cm ² σ = 47 g/cm ²	mean = 13.4 g/cm ² σ = 41.3 g/cm ²
outputs	Core position Energy Xmax	Core position Energy Xmax	Core position Xmax	Core position Xmax
simulation duration	~ 8 hours		~1 week	~1 hour

A good way to compare simulation codes, ex: method A algorithm with CoREAS or ZHAireS

• The radio signal allows the estimation of the composition of cosmic rays

 The Pierre Auger Collaboration is working on determining the composition from radio signal with no bias

- Comparison with a larger set of FD + RD events is essential for the validation of the methods
- The air density and refractivity can explain systematic shifts

• Xmax estimation from radio signals will be a decisive asset for the estimation of the mass composition of cosmic rays due to the high duty cycle of the detectors

Thank you for your attention!

• FD quality cuts

- hasMieDatabase: selects events with aerosol measurements.
- minLgEnergyFD: selects events with FD energy greater than set value.
- **skipSaturated**: removes events with saturated pixels.
- **badFDPeriodRejection**: removes events missing calibration data.
- maxVAOD: removes events where VAOD measurements are larger than 0.1 at a distance 3 km from the telescopes.
- **minBackgroundRMS**: selects events with a minimum background RMS.
- LidarCloudRemoval: removes events in which too many clouds were present based on LIDAR measurement.
- MinCloudDepthDistance: selects events with cloud depth distance greater than minimum.

• FD quality cuts

- MaxCloudThickness: selects events with cloud thickness below maximum.
- badPixels: removes events in which telescopes had one or more pixels with bad calibration constants.
- xMaxObsInExpectedFOV: selects events for which X_{max} is in the expected field of view.
- **xMaxError**: selects events with an error in X_{max} below set value.
- energyTotError: selects events with an error in energy below set value.
- profileChi2Sigma: selects events where reduced χ² for Gaisser-Hillas fit is below set value.
- maxDepthHole: removes events for which the hole in the longitudinal profile is greater than 20%.
- maxCoreTankDist: selects events for which the reconstructed FD core is less in than 750 m away from an SD station.
- FidFOVICRC13prel: removes events which may induce a bias in the energy calibration.

