

Background Rejection in the ARA Experiment

Carl Pfendner Ohio State University

Supported by NSF CAREER Award 1255557, NSF ARA Grant 1404266, BigData Grant 1250720

Part 1: Background rejection in the ARA Testbed station

Event analysis techniques

- GRB timing rejection
- Optimization of cuts

Part 2: New algorithm for background rejection in stations with regular geometry Regular geometry advantages Efficiencies

ARENA 2016

BACKGROUND REJECTION IN THE ARA TESTBED GRB NEUTRINO SEARCH

THE OHIO STATE UNIVERSITY Background Rejection

- 2 basic types of noise
 - CW
 - Thermal

Characterized by (semi-)random fluctuations from surrounding environment

- ARA trigger based on tunnel diode output
 - Acts as a few-ns power integrator
 - Trigger rides a threshold determined by the thermal noise level
 - 100's of millions of events almost all thermal noise
- How to reject these signals efficiently?
 - For analysis cuts
 - For filtering before transmission to the North

The Ohio State University

Testbed Station

- Total 16 antennas, 8 borehole antennas at 150 MHz to 850 MHz
- Maximum depth of antennas ~ 30 m
- 3 sets (Vpol + Hpol) of calibration pulsers
- Deployed 2010-2011
- Ran for 2 years (2011 2012)
 - Not intended for long-term operation

2016-06-09

 First ARA neutrino searches carried out with Testbed station data Diffuse: arxiv:1404.5285 GRB: arxiv:1507.00100
 ARENA 2016

5

The Ohio State University

Testbed Analysis

Adapted interferometric technique from diffuse search for GRB search

- 1. Impulsive waveform ~1-10 ns time scale
- 2. Correlation factor Convolution of the two waveforms including a timing offset
- 3. Calculate timing delays for all angles of approach
- 4. Sample correlation plot at these delays
- 5. Create a map for all pairs of antennas and the correlation

THE OHIO STATE UNIVERSITY Reconstruction Quality Cut

Rejected thermal noise by requiring strong reconstruction map peak that is unique

Reconstruction based on timing from ray-tracing

Use 30 m and 3 km maps in Hpol and Vpol $% \left({{\rm{D}}_{\rm{P}}} \right)$

Requires at least one reconstruction map to be of good quality

1 deg² < Area of 85% contour surrounding the peak < 70 deg²

Total 85% contour peak area < 16.2 x Area of 85% contour surrounding the peak

Depending on the polarizations which pass the cut, the event is separated into Vpol and/or Hpol channels

Rejects ~95% of noise-dominated events after initial quality cuts

ARENA 2016

THE OHIO STATE UNIVERSITY Peak/Correlation Cut

- Expect a correlation between signal strength from waveform and correlation value from reconstruction map for an impulsive event
- After removing known background events with other cuts, use this relation to get background estimation
 - Other cuts made: most reject specific anthropogenic signals

8

The Ohio State University

Testbed GRB analysis

- Adapt the above techniques from the Testbed diffuse neutrino search (arxiv:1404.5285) to search for events coincident with known Gamma Ray Bursts
 - Stricter requirements in time \rightarrow relaxation of cut values
- 2 unblinding stages
 - Tune cuts on 10% of data in the background estimation window
 - 1: Check remaining 90% in background estimation window
 - 2: Signal search 100% of data +/- 5 minutes around GRB event
 - Timing technique adapted from ANITA (arxiv: 1102.3206)

THE OHIO STATE UNIVERSITY

GRB Selection

- Selected 57 GRBs based on livetime and geometric acceptance
- Get fluences for each GRB from NeuCosmA simulation and then total
- Tune cuts based on modeled neutrino fluence

The Ohio State University

Optimization

- Optimize the cut parameters:
 - Fit the background distribution with an exponential
 - Integrate extrapolation to get expected background
 - S_{upper} is the 90% confidence limit on the signal for an expected background
 - N_{passed,sim} is the weighted number of passed simulated neutrinos from an expected flux
 - Maximize R to optimize for best limit

ARENA 2016

$$R = \frac{N_{\text{passed,sim}}}{S_{\text{upper}}}$$

THE OHIO STATE UNIVERSITY

- All optimized cut parameters relaxed for GRB neutrino search when compared with diffuse neutrino search
- Factor of 2.4 improvement in efficiency against a simulated GRB flux
- Another cut for rejecting CW was removed

Cut	Reconstruction Quality Cut		Peak/Correlation Cut
Parameter	A _{peak}	A _{peak} /A _{total}	Peak/Correlation Cut Value
Diffuse Neutrino Search	50 deg ²	1.5	8.8
GRB Neutrino Search	70 deg ²	16.2	7.5

THE OHIO STATE UNIVERSITY Preliminary Results

ARENA 2016

BACKGROUND REJECTION FOR A REGULAR ARRAY

ARENA 2016

THE OHIO STATE UNIVERSITY Filter-level Algorithm

- 100's of millions of events too many to efficiently use complex reconstruction methods
 - Need < 0.1% thermal acceptance to be efficient
- Can we create an adaptable, efficient filter-level algorithm
- Goals:
 - Computationally simple
 - Easily differentiates between signal and noise
 - Decrease volume of data to then use more computationally intensive techniques (ray-tracing, etc)
 - Single understandable output
 - Easily optimizable
- Ultimate goal is a deep station analysis of current data
 - Perhaps use algorithm as a trigger or filter to the North?

Planar Signal Wavefront

The Ohio State University

- Divide array into faces
- Difficult to directly compare timing from different sets of pair-types – what to do?

THE OHIO STATE UNIVERSITY Angle of Incidence

 $\theta_{A,i}$

 $\theta_{A,ii}$

 Comparable between different pair types

$$\theta_{A,i} \approx \theta_{A,ii} \qquad \cos(\theta_{A,i}) \approx \cos(\theta_{A,ii})$$

ARENA 2016

2016-06-09

$$\Delta t_{A,i} = \frac{n}{c} \cos(\theta_{A,i}) \Delta d_{A,i}$$

$$\cos(\theta_{A,i}) = \frac{c\Delta t_{A,i}}{n\Delta d_{A,i}}$$

17

THE OHIO STATE UNIVERSITY

Angular Variation - RMS

- Similar time differences \rightarrow small variation
 - Find the "RMS" around their average

$$\overline{\cos(\theta_A)} = \frac{\cos(\theta_{A,i}) + \cos(\theta_{A,ii})}{2}$$

$$RMS(\cos(\theta_A)) = \sqrt{\frac{\left(\cos(\theta_{A,i}) - \overline{\cos(\theta_A)}\right)^2 + \left(\cos(\theta_{A,ii}) - \overline{\cos(\theta_A)}\right)^2}{2}}$$

- RMS(cos(θ)) < 0.1 if the arrival directions agree
- Also corrects for differences in baseline lengths

ARENA 2016

Find "hit times"

Calibration pulser event

- To decrease noise fluctuations, scan an integrated power window of 5 ns
- Find the two highest peaks, use these as "hit times" for that channel
- Apply a threshold:

 $\frac{\text{RMS}(5 \text{ ns around the peak})}{\text{Smither Provided Provided$

RMS(waveform)

• Find the face with the timing that agrees best with incoming signal (lowest face RMS)

ARENA 2016

THE OHIO STATE UNIVERSITY Preliminary Results - Data

- More event pass threshold in Hpol antennas
 - use separate thresholds for Vpol and Hpol

ARENA 2016

THE OHIO STATE UNIVERSITY Preliminary Results - Simulation

- Simulated 10¹⁹ eV neutrino events generated with AraSim simulation package
- Good separation at high signal strength
- Reasonable separation at lower signal strength
- Noise starts to dominate over low SNR signals difficult to reconstruct anyway

ARENA 2016

Efficiency

- Data RF events Face RMS efficiency = 0.08 %, TSQP = 0.08 %
- Simulation Face RMS efficiency = 83.1%, TSQP efficiency = 81.6%
- Currently filter algorithms comparable
- Face RMS not optimized, may improve even more

ARENA 2016

THE OHIO STATE UNIVERSITY

Conclusions

- Testbed GRB neutrino search
 - Optimized search cuts
 - Limiting background search window \rightarrow cut relaxation
 - New quasi-diffuse flux limit above 10¹⁶ eV
 - Projected limit for ARA37
- New filter-level cut
 - Efficient in rejecting thermal noise 0.08% acceptance
 - Efficient in retaining simulated neutrinos > 95% at high SNR
 - Flexible

Can characterize individual faces separately Can treat hpol and vpol separately

- Can improve event selection at the analysis level and maybe even the trigger level
- Will optimize cut in full analysis (later this year!)

Computing in High-Energy Astro-Particle Research

- Topics: Genetic programming, analytics, data analysis, feature selection, high-performance computing
- Activities: tutorials, lectures, example code packages
- Who: Members of ANITA, ARA, LIGO, SKA, others Experts in genetic programming from industry and academia
- When: August 24th 26th, 2016

e Ohio State University

Where: Center for Gaanel pay and AstroBartiale or Physice af GAARBon The Boin State University

Questions?

