

P. TROPEA

LHCB COOLING MEETING

20 NOV 2015

HTTPS://INDICO.CERN.CH/EVENT/461642/

INTEGRATION

UT REGULATION VALVES

COMMON PATCH PANEL & PATH TOWARDS IT

Transfer lines & services from top of the cavern

Shielding wall passage

Signal cables & pneumatic pipes

2 x Vacuum insulated transfer lines

Power cables

N. B. Estimate of cross sections will be ready for EDR Verification of space & routing during YETS – courtesy LHCb integration

20 Nov 2015

_

ALCOVE: SPACE & INFRASTRUCTURE

- UPS power supply for PLC
- Diesel power for backup chiller (qty depend on backup logic chosen, see next slide)
- General power
- Water: 18 kW mixed water (14 C) or nothing (see next slide)
- Dry air (dew point <-50 C) for flushing & valve piloting @ 7 bar, XX Nm3/h
- Drier: on diesel power, sizing it!
- Ventilation
- CO₂ detection system

Advantages of ALCOVE location

- ✓ Accessible during run for installation
- Decoupled from existing systems (planning takes advantage of "low load" periods)
- Services can be installed ahead of time and be configured such that connection can happen with no disruption

CO₂ COOLING TRANSFER LINE SIZING

Transfer lines between plants and junction boxes

- Preliminary sizing based on commercial vacuum insulated product (80 mm OD) for long lines
- Integration studies necessary to determine correct path
- Revision of process pipe sizing once routing confirmed
- Launch tender for external company to produce (count at least 6 months for purchase & production) — PH-DT can prepare the tender, LHCb team must take over with contract follow up and during installation
- Installation in a few weeks if_routing is kept simple

Velo
cooling
plant

P. Tropea

2 x 80 mm OD concentric vacuum insulated

PRIMARY SYSTEM & BACKUP LOGIC

- a) local water cooled chiller
- b) shared system with other LHCb sub-detectors

UT plant

> Velo plant

BACKUP CHILLER Local chiller, air cooled, on diesel to ensure detector cold when power cut

- a) Full power for operation (in case primary is not proper to UT/Velo)
- b) Limited power for keeping detector cold

P. Tropea

20 Nov 2015

INPUT NEEDED FOR P&I DOCUMENT

CP= Cooling plant (alcove)

JB=junction box (top of the magnet?)

Main inputs still to be clarified:

- Pressure drops along detector circuits (measurements on-going for UT, shall we consider the July measurements for VELO?)
- Safety system granularity/volumes
- Overall transfer line lengths (estimate)

		UT	Velo
Accu Tmin	${}^{\boldsymbol{c}}$	-30	-30
Accu Tmax [°C]	${}^{\boldsymbol{c}}$	15	15
Hot spot - pipe max T inside detector	°C		
CO2 max T – Evap T (=f(l, ID, flow)	$^{\circ}\!\mathcal{C}$		
Detector cooling loops	#	34x2 (+/-x)	26x2 (+/-x)
Parallel loops	#		
Power /cooling loop – HLLT (MAX)	W	76	28.4
Flow/cooling loop - HLLT @ -30	g/s	0.8	0.1-0.3
Dp cooling loop - HLLT@ -30	mbar	300	?
Power /cooling loop - WARM @ 15 C	W	?	?
Flow/cooling loop - WARM @ 15 C	g/s	?	?
Dp cooling loop - WARM @ 15 C	mbar	?	?
Transfer lines CP to JB	#	1	1
JB to detector transfer lines	#	2	2
Manifold	#	2	2
Max detector power	kW	5.472	1.5
Max detector flow	g/s	54.4	15.6
Max detector Dp	mbar	400	?
Max detector + capillaries DP	bar	?	?

20 Nov 2015

PRELIMINARY SCHEDULE - DRAFT FOR DISCUSSION

