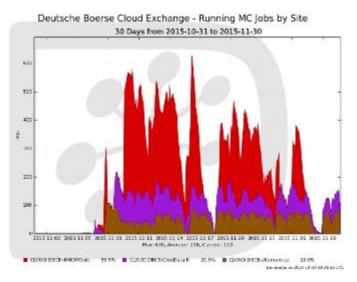
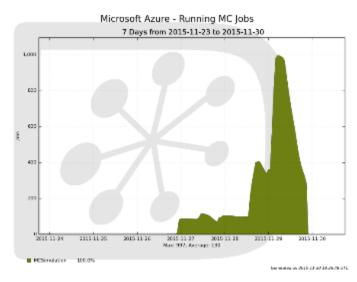

LHCb Computing 2015 Q3 Report

Stefan Roiser
LHCC Referees Meeting
1 December 2015


CPU Resource Usage



- Usage consistent with pledges
 - Job execution continues at very high CPU efficiency
 - As of start of data taking no usage of the HLT farm
 - Deferred triggering occupies the resource for online processing
 - · Continued usage of other opportunistic resources Yandex, Ohio, ...

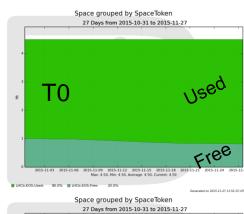
Cloud Resources

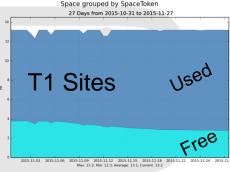
- DBCE: second cloud procurement from CERN IT
 - LHCb quota of ~1000 cores Nov to Jan, split across 3 to 5 providers
 - MC simulation: third procurement will target data processing too
 - Four-core VMs, one MC job (one Dirac pilot) per core
- In parallel, also tested some capacity available on Azure

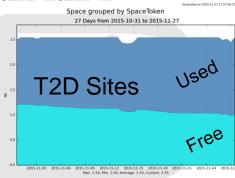
Disk Storage Occupancy

Storage

- Currently using less disk than anticipated
 - LHC live time ~half of that initially foreseen
 - LHCb implemented changes in the computing model parameters (see later) which moderate the tape requirements
 - Also ~1.1PB disk space cleaned up following data popularity analysis
- Expect ~15% less disk usage and ~35% less tape usage with respect to pledge by the end of 2015 WLCG year

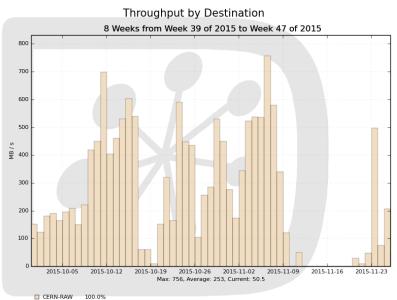

Disk (PB)	CERN	Tier1s	Tier2Ds
LHCb accounting	3.32	8.36	1.20
SLS T0D1 used	3.51	8.43	1.20
SLS T0D1 free	1.57	5.31	1.36
SLS T1D0 (used+free)	0.53	1.36	
SLS T0D1+T1D0 total1	5.61	15.10	2.56
Pledge '15	5.50	14.04	1.95

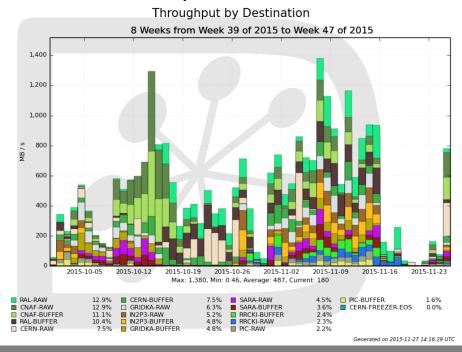

Tape (PB)	CERN + Tier1s	
RAW	6.5	
FULL.DST	4.9	
ARCHIVE	5.5	
TOTAL	16.9	
Pledge '15	39.3	



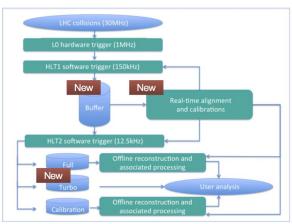
C. Bozzi - NCB - 14/09/2015

12



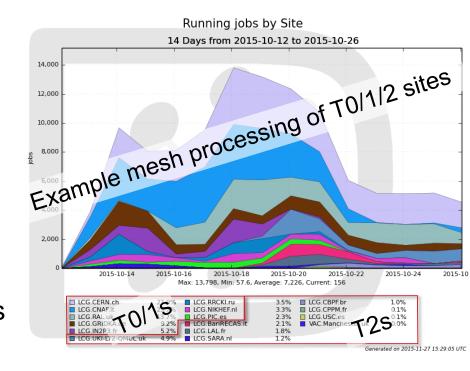

Exercising the data flows

- Data transport at designed Run2 throughput rates
 - Further optimization of overall workflow by merging small RAW files in the pit -> less files -> higher throughput with FTS transfer service



Pit export of RAW files at design throughput of up to 750 MB/s

CERN RAW export to T1s at > 1.3 GB/s



Exercising the workflows

- "Mesh processing"
 - ie. allow T2 sites to dynamically contribute to workflows
 - Very flexible way of distributing work across sites / tier levels
- + more than pp collisions
 - SMOG ie. p-He/Ne/Ar collisions
 - PbPb program ongoing ...

- Turbo processing
 - Write out reconstructed physics objects directly from the pit after final alignment / calibration

Next steps & winter shutdown activities

- Data processing
 - Several more planned processings upcoming
 - Run 2
 - Proton-Argon 5TeV & 13TeV, led-led first pass processing
 - Full pp data re-stripping
 - Run 1 incremental stripping
 - + proton-Neon, proton-Helium and Turbo reprocessing
 - Small datasets
 - No pp reprocessing as laid out in the planning
- Simulation
 - Finalize Sim09 validation
 - le. next major step in the simulation framework using new versions of Geant4, generators + tuning, Root 6, ...
 - Supports both Run 1 and Run 2 data

6th LHCb Computing Workshop

- This edition dedicated to "Run 3 brainstorming"
 - 16 20 Nov in LPNHE@Paris (first time outside CERN)
 - Plenary + 5 parallel tracks (event model, hardware, framework, data access, collab. tools)
 - ~ 70 participants
 - Core computing team, physicists, "externals" (CERN/SFT, ATLAS, CMS, FCC, Google, Intel, skykitlearn, HPX, ...)
- Shall lead to a "Run 3 roadmap"
 - Further evolve into the Computing TDR due by Q4 2017

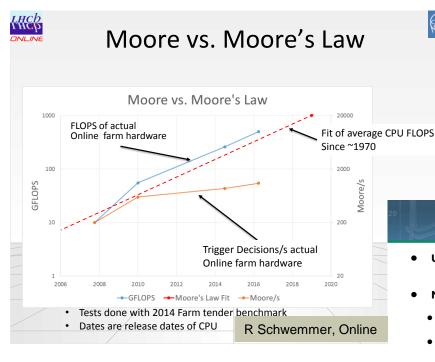
In conclusion

- · A very productive week
- Lots of enthusiasm
- Critical assessment of current model, weak • Several ideas on how to improve / redesign • Beware of timescales / effort required

kererees

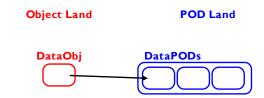
• Keep up momentum!

C Bozzi, Workshop Summary



1 Dec '15

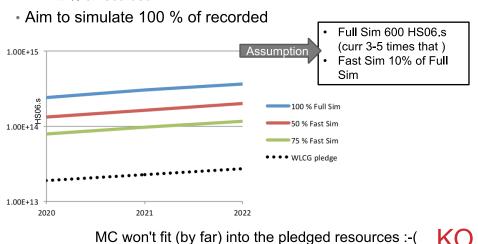
Some impressions from the workshop ...


Vectorization

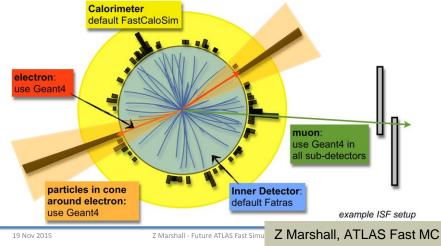
- Decreasing number of trigger decisions / FLOP
 - Need better usage of CPU vectorization capabilities

Separation of Concerns

- Using PODs is a good idea, but...
 ... they are a little bit too dump to support all what is needed.
- Need smart layers on top of the PODs
 - Dealing with ownership
 - Allow referencing between objects
 - Deal with non-trivial I/O operations


 Whenever really performance critical - leave possibility of access to bare PODs

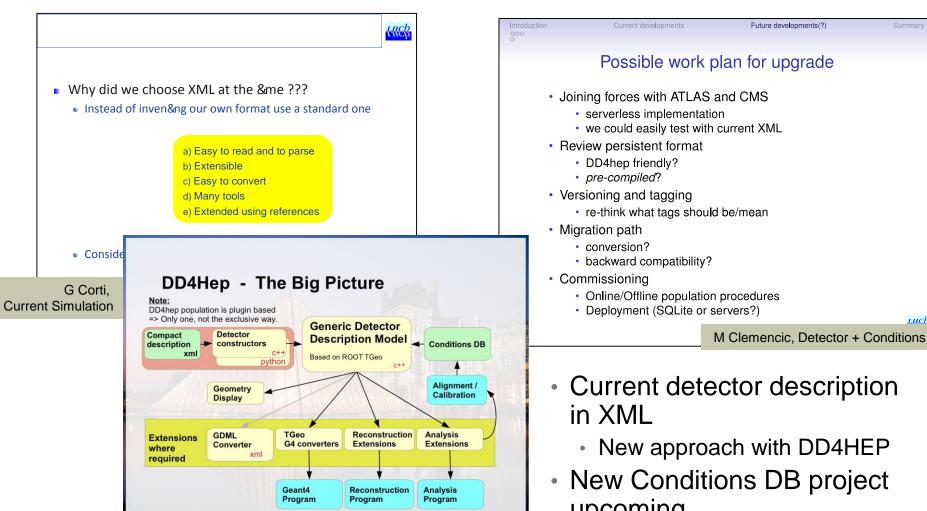
Simulation needs


Monte Carlo Simulation

- Run 1 simulated events ~ 4.5*10⁹ (spring '15)
 - ~ 12 % of recorded

The Integrated Simulation Framework

- More recently we introduced the concept of the ISF in ATLAS
- Controls the stack; allows mixed simulation flavors in one event
- Hard questions about calibration and scale factors to be addressed


 CPU work on distributed resources will be dominated by Simulation!!

F Stagni, Computing in 2020

19 Nov '15

Detector Description & Conditions

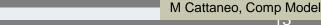
- Possible work plan for upgrade
 - Current detector description
 - New approach with DD4HEP
 - New Conditions DB project upcoming

AIDA Nov 18th 2015

LHCb Software Workshop Paris

M Frank, DD4HEP

More questions from the workshop


- Do we need stripping at a
 - ~ 100 % retention rate?
 - Or is it enough to do "streaming"
- Which data formats do we need?
 - More "turbo like" processing to come
- Multi-threaded applications
- Improvements in user analysis workflows?
- Infrastructure needs
 - Improvements with code repositories, continuous integration, documentation, collaborative tools, development processes, ...

Growing up

- o An incremental approach to deployment of new features
 - Adapting to changing requirements and environment
 - ≈ E.g. one order of magnitude increase in HLT output rate
 - Learn from the past, throw away what works badly, keep and improve what works well
- o Development in parallel with running production system
 - Physics software in production since 1996
 - be detector design, detector optimisation, HLT+physics preparation, physics exploitation
 - Production system continuously supporting major productions and analysis since 2004
- Strong constraint also for the future
 - Continue to support running experiment
 - Continue to support analysis of legacy data
 - Minimise pain of maintenance by supporting legacy data in new
 - Do not underestimate training effort to keep users on board

Answers?

- What / how much can be done
 - Constrained by maintaining a detector in operations
- Many collaboration opportunities with other experiments
 - Conditions data, detector description, event model description, fast simulation, software framework, ...
- Re-thinking of data processing workflows
 - Which will have implications on the distributed computing model
 - Evisage first discussion at WLCG Workshop @ Lisbon Feb'16
- Currently working towards a roadmap by Q1/16
 - Which will lead us to the Computing TDR by Q4/17

Summary

- Run 2 data processing in full swing
 - pp processing finished but more programs to exercise
 - Working at design levels
 - All Run 2 workflows foreseen have been successfully exercised
- Brainstorming towards Run 3 has started
 - Very well attended workshop as official kick-off meeting
 - Several seeds have been planted, now see if they grow
 - Many opportunities to collaborate with other experiments
 - Detailed roadmap will be available early next year

