

LHC collimation

R. Bruce on behalf of the CERN LHC collimation team

- CERN is the world's largest particle physics centre, founded in 1954
- Located on the border between
 France and
 Switzerland
- 2600 employees, 7900 visiting scientists, 500 universities, 80 countries

LHC (Large Hadron Collider)

Largest accelerator/collider (together with LEP) and highest energy ever Design started in the early 1980's, approved in 1995

 Built in old LEP tunnel to collide

- 7 TeV protons
- 0.57 PeV Pb⁸²⁺
 nuclei (fully stripped ions)
- 4 interaction points (IPs) with experiments ATLAS, CMS, LHCb, ALICE
- 8 straight sect., 8 arcs

2008.11.14

Some LHC figures

- 100 m underground
- Almost 10 000 magnets, many superconducting
- 1.9 K working temperature of superconductors
- 10⁻¹³ atm vacuum pressure
- Nominal LHC: 362 MJ stored beam energy

Physics motivation

PROTONS

Find Higgs particle (ATLAS, CMS)

Explain origin of mass

Search for supersymmetric particles (ATLAS, CMS)

Unification of forces

Dark matter

Balance between matter and antimatter in the universe

Symmetry breaking in b-meson decay (LHCb)

HEAVY IONS

Find and study quark-gluon plasma (ALICE)

State of matter believed to have existed in the early universe. No colour confinement 2008.11.14 R. Bruce

CERN complex

 LHC last in chain of accelerators

LHC stored energy

 Huge stored energy per beam : 362 MJ for nominal configuration, 675 MJ for planned upgrade HL-LHC

675 MJ = kinetic energy of USS Harry S. Truman cruising at 7 knots

• Beams could be highly destructive if not controlled well

LHC Collimation

CEDI

LHC challenge

Factor ~10⁸

Collimators play an essential role to prevent dangerous losses

Collimator = movable absorber block, installed so that any particle that get far from the wanted trajectory is intercepted there and not by sensitive elements, e.g. magnets Proton beam: 3e14 protons (design: **362 MJ**)

LHC collimators

• Two jaws, beam passing in between, most are 1 m long

Roles of LHC collimation

- Beam halo cleaning: Safely dispose of unavoidable beam losses
 - allow high-intensity operation below quench limit of superconducting magnets
 - Confine losses in dedicated regions to minimize radiation doses to sensitive equipment or personnel.
- Passive machine protection: Absorb beam losses in case of beam failures
 - protect sensitive equipment from damage and/or quenches
- Physics debris cleaning: Catch losses from collision process in experiments.
 - As for halo cleaning: stay clear of quenches and confine losses
- Reduce background in experiments
 - Catch incoming losses upstream of the detectors.

Beam loss mechanisms

- Halo population and emittance growth from several sources:
 - Collisions in experiments, long-range beam-beam effect
 - Intra-beam scattering, Touschek effect, space charge
 - Scattering on rest gas
 - Beam acceleration, RF gymnastics
 - Imperfections on RF, magnets, feedback
 - Non-linearities, dynamic aperture
- Fast beam failures
 - Failure of magnets, RF cavities. Especially dangerous: bending dipoles and kickers

Where to add collimators

- Global protection of whole ring or transfer line from beam-halo
 - Possibly more cost-efficient than adding local protection to many elements
 - Collimators should be the smallest normalized aperture limitation
 - Which particles do we want to intercept large betatron amplitudes or energy errors? *Betatron vs momentum collimation*
- Local protection in front of sensitive equipment or just downstream loss source, such as collider experiment or dump kicker
 - Simplest approach but often enough!
 - Collimator should have smaller physical aperture than the element. Often fixed mask

Global protection: LHC collimation layout

B1

,d

Ϋ́

IP1

LHC Collimation

Project

Betatron and momentum Collimation

 Transverse coordinates given by superposition of betatron oscillation and off-energy trajectory

$$x = \sqrt{2 J \beta} \cos(\mu - \mu_0) + D \delta$$

- Particles with high betatron amplitude caught by IR7 collimators
- Momentum collimation (installed in high-dispersion region) installed to clean particles with high energy offsets

Example of local protection

- LHC interaction point:
 - Local protection on outgoing beam to catch collision debris
 - Local protection on incoming beam to reduce background and shield aperture bottleneck

LHC Collimation

Project

How many collimators?

• Simplest approach: single-stage cleaning.

Single or multi-stage

- If single stage does not provide sufficient cleaning (usually based on simulation studies): add more stages
- Two stages commonly used: scatterer intercepting primary halo, absorber catching out-scattered particles
- LHC: 5 stages including protection devices needed.

Placement of secondary collimators

- Secondary collimator must have retraction from primary collimator that is sufficient for not intercepting primary halo
 - Consider transfer line vs ring, phase advance
 - Consider imperfections, misalignments, drift of beam, β-beat
- Optimal phase advance from primary collimator
 - $\varphi_{opt} = \arccos\left(\frac{n_1}{n_2}\right) \pm m \pi$... with n_1 the opening of primary collimator, n_2 the opening of the secondary collimator in units of beam σ
 - Optimum in terms of covering the largest range of scattering angles

Movable vs fixed devices

- If collimator opening does not need to be changed, fixed masks could be considered
 - Fixed masks more sensitive to errors: alignment, optics, orbit. If problems, need to open machine to fix!
- LHC: very different beam sizes and normalized aperture to protect at injection energy and top energy. Movable devices necessary!
 - Movable devices allow optimization of cleaning by alignment using achieved orbit beta function. Robust vs imperfections!
 - Movable collimators significantly more challenging in terms of engineering design. Control system needed. More expensive!

Choice of material

Several parameters influence choice of material

- Cleaning efficiency (absorption rate) short interaction length better
- Robustness in case of high impacts or accidents
- Resistance to radiation damage effects, activation
- **RF impedance:** Maximize Electrical Conductivity
- Mechanical properties: thermal behavior, brittleness, stability, easy to machine
- Vacuum behaviour: minimize outgassing
- Availability, price

LHC collimator materials

- Tertiary collimators made of tungsten for optimal absorption. Not optimal robustness
- Advanced R&D ongoing to find materials for future collimators (A. Bertarelli et al.)
 - Molybdenum Graphite composite, possibly with molybdenum coating, seems to be most promising option at the moment
 - Experimental program on radiation resistance in collaboration with GSI, BNL, Kurchatov
 - Experimental program at CERN to verify robustness HiRadMat

Experimental tests of beam impact

Collimation cleaning qualified by provoked losses (loss map)Loss distribution around ring measured

Stored energy in Run 1

- LHC collimation worked very well in Run 1 (2010 2013)
- Routinely stored ~140 MJ beams over hours. No beam-induced quenches during physics operation

Stored energy in 2015

S. Redaelli 250 25 ns (2) ~ 2 order of magnitude above previous state-of-the-art set by Tevatron. 200 No quench from circulating beam losses (except of fast UFO losses)! Stored beam energy [MJ] 150 100 ns 100 (*β**=90m) 50 ns 25 ns (1) 50 00 0

16/05/2015 05/06/2015 25/06/2015 15/07/2015 04/08/2015 24/08/2015 13/09/2015 03/10/2015 23/10/2015 12/11/2015

- LHC collimators have a wide range of applications: protect against quenches, radiation damage, experimental background, direct damage from beam impact...
 - About 100 collimators
 - Operational experience: No beam-induced quenches (yet) with circulating beam during physics operation
 - Handled losses of ~1 MW without quench
- More challenges ahead: doubled stored energy in HL-LHC