AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

NGACDT Annual Conference

CERN, Nov. 2015

Janet Schmidt CERN TE-ABT-BTP

Outline

WAKE

Α

- 1. Introduction: AWAKE and plasma wake field acceleration
- 2. AWAKE at CERN
 - Experimental Phase 1
 - Experimental Phase 2
- 3. Status of AWAKE

AWAKE – Who We Are?

- Proton driven plasma wake field acceleration of electrons
 - First proof of principle experiment worldwide
- 16 institutes in the collaboration
- Approved in Aug. 2013 🛛 👋
- First beam planned in 2016

Vancouver

Novosibirsk

Beam Driven Wakefield Experiments

Facility	Where	Drive (D) beam	Witness (W) beam	Start	End	Goal
AWAKE	CERN, Geneva, Switzerland	400 GeV protons	Externally injected electron beam (PHIN 15 MeV)	2016	2020+	 Use for future high energy e-/e+ collider. Study Self-Modulation Instability (SMI). Accelerate externally injected electrons. Demonstrate scalability of acceleration scheme.
SLAC-FACET	SLAC, Stanford, USA	20 GeV electrons and positrons	Two-bunch formed with mask (e ⁻ /e ⁺ and e ⁻ -e ⁺ bunches)	2012	Sept 2016	 Acceleration of witness bunch with high quality and efficiency Acceleration of positrons FACET II proposal for 2018 operation
DESY-Zeuthen	PITZ, DESY, Zeuthen, Germany	20 MeV electron beam	No witness (W) beam, only D beam from RF- gun.	2015	~2017	- Study Self-Modulation Instability (SMI)
DESY-FLASH Forward	DESY, Hamburg, Germany	X-ray FEL type electron beam 1 GeV	D + W in FEL bunch. Or independent W-bunch (LWFA).	2016	2020+	 Application (mostly) for x-ray FEL Energy-doubling of Flash-beam energy Upgrade-stage: use 2 GeV FEL D beam
Brookhaven ATF	BNL, Brookhaven, USA	60 MeV electrons	Several bunches, D+W formed with mask.	On going		 Study quasi-nonlinear PWFA regime. Study PWFA driven by multiple bunches Visualisation with optical techniques

Protons as Drive Beam

• Drivers:

- PW lasers today, ~40 J/Pulse
- FACET, 30J/bunch
- SPS 20kJ/bunch → LHC 300 kJ/bunch

Protons as Drive Beam

• Drivers:

Blue

A

Caldwell

PRL, 90, 214801 (2003) - =

Nat. Phys. 5, 363 (2009)

- PW lasers today, ~40 J/Pulse
- FACET, 30J/bunch
- SPS 20kJ/bunch → LHC 300 kJ/bunch

e⁻-Witness

Protons as Drive Beam

P+

E=1 TeV, ΔE/E=10%, N_p=10¹¹

 σ_z =100 μm, σ_r =0.43 mm, σ_{θ} =0.03 mrad

The Facility at CERN

- Installation @ former CNGS Facility
- Phase 1 in 2016
- Phase 2 in 2017
- 3-4 year physics program
- 4* 2weeks per year run

The Self-Modulation Instability

Spontaneous instability

 c/ω_p

Drawings

from K. Lotov

AI

Original beam (front view)

Axisymmetric mode (half of the beam contributes to on-axis field excitation)

Hosing mode (small fraction of the beam contributes to the field at a given point)

M. Cooper

Seeding of Self-Modulation Instability

A-KE

N. Kumar, A. Pukhov, and K. V. Lotov, Phys. Rev. Lett. 104, 255003 (2010)

Phase 1 - the Self-Modulation Instability

Α

Phase 2 – Electron Acceleration

- Trapping efficiency: 10-15% (high sensitivity diagnostics)
- Average energy gain: 1.3 GeV
- Energy spread: ± 0.4 GeV
- Angular spread up to ± 4 mrad

Trapping and Acceleration of the Electrons

AWAKE

Stabilization of Peak Electric Fields

KE

A. Caldwell, K. V. Lotov, Phys. Plasmas 18, 13101 (2011)

Simulations on Plasma Distribution with Gradient and Density Ramp

 Realistic simulation need +1% to include density n distributions at plasma edges Implementation of density gradient can be used to 10m Ζ optimize capture efficiency Low slowly Low slowly Fast growing 1% density Fast decreasing increasing decreasing density gradient density density density

The Experimental Setup

• Plasma cell

- Electron beam
- Diagnostics

The Experimental Setup

e spectrometer

beam

Lasermo

SPS of ons

and a get

RF BUT

stitter Acceleration . SMI

- Plasma cell
- Laser beam
- Proton beam
- Electron beam
- Diagnostics

AWAKE

SPS Proton Beam

• LHC type proton beam

A WAKE-

SPS Proton Beam

• LHC type proton beam

The Laser Beam

- Ionizing the rubidium
- Seeding the self-modulation instability
- Driving the electron gun

AWAKE

Laser Beam										
Laser type	Fiber Ti:Saphire									
Pulse wavelength	λ_0 = 780 nm									
Pulse length	100-120 fs									
Pulse energy (after compr.)	450 mJ									
Laser power	4.5 TW									
Focused laser size	$\sigma_{x,y}$ = 1 mm									
Rayleigh length Z _R	5 m									
Energy stability	±1.5% r.m.s.									
Repetition rate	10 Hz									

Electron Beam

- Reuse of the PHIN photoinjector (from CTF3/CLIC)
- 14m transfer line

A WAKE

• Diagnostic of acceleration with spectrometer magnet

Electron beam										
Momentum	16 MeV/c									
Electrons/bunch (bunch charge)	1.2 E9 (0.2 nC)									
Bunch length	σ_z =4ps (1.2mm)									
Bunch size at focus	$\sigma^*_{x,y}$ = 250 μ m									
Normalized emittance (r.m.s.)	2 mm mrad									
Relative energy spread	$\Delta p/p = 0.5\%$									
Beta function	$\beta_{x}^{*} = \beta_{y}^{*} = 0.4 \text{ m}$									
Dispersion	$D_{x}^{*} = D_{y}^{*} = 0$									

Transfer Lines

- Proton, laser and electron beam transferred to plasma cell
- Parallel operation → diagnostic
- As flexible as possible

A WAKE-

Parameter	Protons	Electrons		
Momentum [MeV/c]	400 000	10-20		
Momentum spread [%]	±0.35	± 0.5		
Particles per bunch	$3 \cdot 10^{11}$	$1.25 \cdot 10^9$		
Charge per bunch [nC]	48	0.2		
Bunch length [mm]	120 (0.4 ns)	1.2 (4ps)		
Norm. emittance [mm·mrad]	3.5	2		
Repetition rate [Hz]	0.033	10		
1σ spot size at focal point [μ m]	200 ± 20	<250		
β -function at focal point [m]	5	0.4		
Dispersion at focal point [m]	0	0		

Proton Beam Transfer

- $\sigma_z = 12 \text{ cm } \sigma_{x,y} = 200 \mu \text{ m}$
- Created chicane to merge laser beam
- Synchronization with laser beam @ 100 ps level

The Electron Transfer Line

- Transport the electron beam from source level up to the plasma source level
- Merge electron beam with proton beam
- Provide a flexible focus point with
 - σ_{x,y} ≤ 250μm • 3 - 4.5m after last quadrupole

Common Beam Line

1. Introduce an offset in the common beam line

2. Introduce an offset and angle at the focal point of the electron beam

Common Beam Line

1. Introduce an offset in the common beam line

- reduce beam-beam effects
- 2. Introduce an offset and angle at the focal point of the electron beam

Scan transverse phase space to optimize trapping efficiency

Courtesy of U. Dorda

The Plasma Cell – Rubidium Vapor Source

- Density adjustable from $10^{14} 10^{15}$ cm⁻³
 - Requirement: uniformity better than 0.2%
- 10 m long, 4 cm diameter
- Oil-heated system

10 m long plasma cell prototype in the AWAKE test area at CERN

Diagnostic Section

Direct Self-Modulation Diagnostic

→ transforming the charge distribution information into a radiation distribution using transition radiation

A Measured radiation emitted by the bunch when traversing a dielectric interface or by directly sampling the bunch space charge field.
OTR Light pulses

Measure the OTR Light pulse with a streak camera (~ps resolution) while imaging:

K. Rieger, M. Martyanov

CTR

 $\sigma_n \sim 400 \text{ ps}$

OTR

 $4 \, \mathrm{ps}$

Indirect Self-Modulation Diagnostic

- SMI causes angular divergence of the proton beam at the order of ~1 mrad.
- → Measure bunch profile at two different scintillator screens at a distance of ~8m

Electron Energy Spectrometer

Time Line

	2013	2014	2015	2016	2017	20)18	2019	2020	2021	2022ff
Proton and laser beam-line	Study, Design, Procurement,	, Component prepar	Installa	ation Commit	Data takir			Long Shutdown 2 24 months		Data taking	
Experim-ental area	Study, Design, Procurement, Com	tallation : Si on in in g	Phase 1					Phase 2 cont'd			
e ⁻ source and beam-line	Studie	es, design	Fabricat	ion	Installation	Commissionin	nase 2				Phase 3

A WAKE

Time Line

	2013	2014	2015	2016	2017		2018	2019	2020	2021	2022ff	
Proton and laser beam-line	Study, Design, Procurement,	Component prepara	Installa	ation		Dat	a aking	Long Shu 24 m	utdown 2 onths	Data taking		
Experim-ental area	Study, Design, Procurement, Com	Phase 1					Phase 2 cont'd					
e ⁻ source and beam-line	Studie	es, design	Fabrica	tion	Installation	Commissionin g	Phase 2				Phase 3	

A WAKE

Time Line

Electron Gun 20 MeV electro

Laser to ionize

Multi GeV electron spectrometer

	2013	2014	2015	2016	2017		2018	201	19	2020	2021	2022ff
Proton and laser beam-line	Study, Design, Procurement,	Component prepar	Install			Da	ta aking	aking Long 2		ntdown 2 onths	Data taki	
Experim-ental area	Study, Design, Procurement, Com		Phase 1						Phase 2 cont'd			
e ⁻ source and beam-line	Studies, design		Fabrica	tion	Installation		Phase	se 2				Phase 3

A WAKE

Proton Line and Target Area

General Installation

Magnet transport

Ans Pardons

cabling

Fire safety

Electron Beam Line

Thank you

