Fast electron beam heating in solid targets

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Queens University Belfast

rgarland05@qub.ac.uk

November 13, 2015

A (1) > A (1) > A

Outline

1 Introduction

2 Simulations

æ

<ロ> <四> <四> <日> <日> <日</p>

Motivation

- TNSA
- Fast Ignition ICF
- WDM
- Astrophysical Experiments

э

<ロ> <同> <同> <同> < 同>

-∢ ≣⇒

Applications

Figure : TNSA

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

QUB

2

<ロ> <同> <同> < 回> < 回>

Applications Fast Ignition

Figure : Direct Drive vs Direct Drive Fast Ignition

<ロ> <同> <同> < 回> < 回>

2

QUB

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs QUB

문어 문

・ロト ・日下 ・ 日下

• Generated from $\mathbf{j} \times \mathbf{B}$ heating.

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs • • • • • • • •

- Generated from $\mathbf{j} \times \mathbf{B}$ heating.
- Maxwell-Jüttner distribution

< (17) > <

- Generated from **j** × **B** heating.
- Maxwell-Jüttner distribution
- Temperature scales with:

$$T(MeV) = 0.511 \left(\sqrt{1 + rac{I_{18}\lambda_{\mu m}^2}{1.37}} - 1
ight)$$

< 17 >

-

- Generated from **j** × **B** heating.
- Maxwell-Jüttner distribution
- Temperature scales with:

$$T(MeV) = 0.511 \left(\sqrt{1 + rac{l_{18}\lambda_{\mu m}^2}{1.37}} - 1
ight)$$

Propagate through the target

QUB

What are Fast Electron Beams?

- Generated from **j** × **B** heating.
- Maxwell-Jüttner distribution
- Temperature scales with: $T(MeV) = 0.511 \left(\sqrt{1 + \frac{l_{18}\lambda_{\mu m}^2}{1.37}} - 1 \right)$
- Propagate through the target
- Generation of Electric and Magnetic Fields

- Generated from **j** × **B** heating.
- Maxwell-Jüttner distribution
- Temperature scales with: $T(MeV) = 0.511 \left(\sqrt{1 + \frac{l_{18} \lambda_{\mu m}^2}{1.37}} - 1 \right)$
- Propagate through the target
- Generation of Electric and Magnetic Fields
- Current Neutrality $(j_f \approx -j_B)$

- Generated from **j** × **B** heating.
- Maxwell-Jüttner distribution
- Temperature scales with: $T(MeV) = 0.511 \left(\sqrt{1 + \frac{l_{18} \lambda_{\mu m}^2}{1.37}} - 1 \right)$
- Propagate through the target
- Generation of Electric and Magnetic Fields
- Current Neutrality $(j_f \approx -j_B)$
- Return current leads to ohmic heating of the target

• • • • • • • •

QUB

Current Work on fast electron transport

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs

< 17 ▶

QUB

Current Work on fast electron transport

Reduction of the fast electron radius

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs

QUB

Current Work on fast electron transport

Reduction of the fast electron radius

Resistive guiding:

$$\frac{\delta \mathbf{B}}{\delta t} = \eta \nabla \times \mathbf{j}_{f} + \frac{\nabla(\eta) \times \mathbf{j}_{f}}{\nabla(\eta) \times \mathbf{j}_{f}}$$
(1)

< 冊

-

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs

Current Work on fast electron transport

Reduction of the fast electron radius

Resistive guiding:

$$\frac{\delta \mathbf{B}}{\delta t} = \eta \nabla \times \mathbf{j}_{f} + \frac{\nabla(\eta) \times \mathbf{j}_{f}}{\nabla(\eta) \times \mathbf{j}_{f}}$$
(1)

< 17 ▶

-

 How fast-electron based heating scales with key experimental parameters

Fast electron heating

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs QUB

• • • • • • • •

2

문어 문

Fast electron heating

Fast electron heating makes a large assumption: a Spitzer like resistivity

< 17 ▶

-

QUB

Fast electron heating

Fast electron heating makes a large assumption: a Spitzer like resistivity

$$T \propto \frac{\beta^{\frac{4}{5}} I_L^{\frac{2}{5}} t_h^{\frac{2}{5}}}{\lambda^{\frac{4}{5}} n_i^{\frac{2}{5}}}.$$
 (2)

< 17 ▶

-

Fast electron heating

Fast electron heating makes a large assumption: a Spitzer like resistivity

$$T \propto \frac{\beta^{\frac{4}{5}} I_L^{\frac{2}{5}} t_h^{\frac{2}{5}}}{\lambda^{\frac{4}{5}} n_i^{\frac{2}{5}}}.$$
 (2)

While this is an accurate representation of a plasma, it does not clearly represent the cold target.

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs QUB

æ

<ロ> <四> <四> <日> <日> <日</p>

By treating the target via cold resistivity, it is possible to arrive at two different resistivities:

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

▲ 同 → - ▲ 三

- By treating the target via cold resistivity, it is possible to arrive at two different resistivities:
- Constant resitivity:

$$T \propto \frac{\beta^2 I_L \tau_L}{Z n_i \lambda_L} \tag{3}$$

・ロト ・日下 ・ 日下

Heating by FEBs

QUB

Another alternative

- By treating the target via cold resistivity, it is possible to arrive at two different resistivities:
- Constant resitivity:

$$T \propto \frac{\beta^2 I_L \tau_L}{Z n_i \lambda_L} \tag{3}$$

Square root resistivity:

$$T \propto \frac{\beta^4 I_L^2 \tau_L^2}{Z^2 n_i^2 \lambda_L^2} \tag{4}$$

▲ 同 → - ▲ 三

- By treating the target via cold resistivity, it is possible to arrive at two different resistivities:
- Constant resitivity:

$$T \propto \frac{\beta^2 I_L \tau_L}{Z n_i \lambda_L} \tag{3}$$

Square root resistivity:

$$T \propto \frac{\beta^4 I_L^2 \tau_L^2}{Z^2 n_i^2 \lambda_L^2} \tag{4}$$

The aim of this work is to preform simulations on a variety of targets to see which model is best suited towards it.

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Outline

2 Simulations

æ

<ロ> <四> <四> <日> <日> <日</p>

ZEPHYROS - Hybrid-PIC code

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs 글 🕨 🛛 글

・ロト ・日下 ・ 日下

- ZEPHYROS Hybrid-PIC code
- Follows Davies(2002) rigid beam model

э.

・ロト ・日下 ・ 日下

- ZEPHYROS Hybrid-PIC code
- Follows Davies(2002) rigid beam model
- Calculates electric field from resistive Ohms Law and by considering current neutrality can arrive at equations for the Electric and Magnetic fields.

•
$$\mathbf{E} = -\eta \mathbf{j}_f + \frac{\eta}{\mu_0} \nabla \times \mathbf{B}$$

$$\frac{\delta \mathbf{B}}{\delta t} = \eta \nabla \times \mathbf{j}_f + \nabla(\eta) \times \mathbf{j}_f + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B} - \frac{1}{\mu_0} \nabla \eta \mathbf{B}$$

< 17 ▶

-

- ZEPHYROS Hybrid-PIC code
- Follows Davies(2002) rigid beam model
- Calculates electric field from resistive Ohms Law and by considering current neutrality can arrive at equations for the Electric and Magnetic fields.

•
$$\mathbf{E} = -\eta \mathbf{j}_f + \frac{\eta}{\mu_0} \nabla \times \mathbf{B}$$

- $\mathbf{I} \frac{\delta \mathbf{B}}{\delta t} = \eta \nabla \times \mathbf{j}_f + \nabla(\eta) \times \mathbf{j}_f + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B} \frac{1}{\mu_0} \nabla \eta \mathbf{B}$
- Manually enter a resistivity model

(日) (同) (三) (

Simulation Setup i

 \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.

<ロ> (四) (四) (三) (三)

э

QUB

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

Simulation Setup i

- \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.
- 4 \times 10⁷ particles

Simulation Setup i

- \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.
- 4 \times 10⁷ particles
- Initial Parameters followed Taranis laser parameters

Simulation Setup i

- \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.
- 4 \times 10⁷ particles
- Initial Parameters followed Taranis laser parameters
- Beam radius of 10 μ m.

・ロン ・回 と ・ ヨン・

Simulation Setup i

- \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.
- 4 \times 10⁷ particles
- Initial Parameters followed Taranis laser parameters
- Beam radius of 10μ m.
- Angle of Divergence: 60°(1.047rad).

イロト イヨト イヨト イ

Simulation Setup i

- \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.
- 4 \times 10⁷ particles
- Initial Parameters followed Taranis laser parameters
- Beam radius of 10 μ m.
- Angle of Divergence: 60°(1.047rad).
- β =of 0.4

QUB

ZEPHYROS(II)

Simulation Setup i

 \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.

- 4 \times 10⁷ particles
- Initial Parameters followed Taranis laser parameters
- Beam radius of 10 μ m.
- Angle of Divergence: 60°(1.047rad).
- β =of 0.4
- Laser Pulse duration of 5.6×10^{-13} s.

QUB

ZEPHYROS(II)

Simulation Setup i

 \blacksquare 200 \times 200 \times 200 grid used with cells being 0.1 μm in length.

- 4 \times 10⁷ particles
- Initial Parameters followed Taranis laser parameters
- Beam radius of 10 μ m.
- Angle of Divergence: 60°(1.047rad).
- β =of 0.4
- Laser Pulse duration of 5.6×10^{-13} s.
- Targets used: AI, Ti, Au & CH

Simulation Setup ii

Run	$I(Wcm^{-2})$	$\lambda(\mu m)$	$n_i(cm^{-3})$	Fast e- Temp (MeV)
А	2×10 ¹⁹	1.053	See table 2	1.61
В	9.25×10 ¹⁹			
С	5.55×10^{19}			
D	3.33×10 ¹⁹			
E	1.2×10^{19}			
F	7.2×10 ¹⁸			
G	4.32×10 ¹⁸			
Н		4.875		9.02
1		2.925		5.22
J		1.755		2.95
К		0.6318		0.824
L		0.379		0.388
М		0.227		0.166
N			See table 2	
0			See table 2	
Р			See table 2	
Q			See table 2	
R			See table 2	
S			See table 2	

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

QUB

æ

<ロ> <四> <四> <日> <日> <日</p>

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

QUB

2

<ロ> <同> <同> <同> < 同>

<≣⇒

Outline

2 Simulations

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs QUB

æ

<ロ> <四> <四> <日> <日> <日</p>

Heating by FEBs

э

QUB

Heating Profiles

Can be seen from the 3 figures that the heating profiles are consistent.

Heating at 2μ m

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

Heating(II) ^{2 µm}

 $T \propto \frac{\beta^{\frac{4}{5}} I_{L}^{\frac{2}{5}} t_{h}^{\frac{2}{5}}}{\lambda^{\frac{4}{5}} n_{i}^{\frac{2}{5}}}$ $T \propto \frac{\beta^{2} I_{L} \tau_{L}}{Z n_{i} \lambda_{L}}$ $T \propto \frac{\beta^{4} I_{L}^{2} \tau_{L}^{2}}{Z^{2} n_{i}^{2} \lambda_{L}^{2}}$

Run	I	λ	ni
Al	1.17037	1.3973	0.9461
Ti	1.31882	1.4853	1.1457
Au	1.71775	1.6205	1.6167
CH	0.89455	1.1440	0.4761

<ロ> <四> <四> <日> <日> <日</p>

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

QUB

Heating(III) ^{4 µm}

 $T \propto \frac{\beta^{\frac{4}{5}} I_{L}^{\frac{2}{5}} t_{h}^{\frac{2}{5}}}{\lambda^{\frac{4}{5}} n_{i}^{\frac{2}{5}}}$ $T \propto \frac{\beta^{2} I_{L} \tau_{L}}{Z n_{i} \lambda_{L}}$ $T \propto \frac{\beta^{4} I_{L}^{2} \tau_{L}^{2}}{Z^{2} n_{i}^{2} \lambda_{L}^{2}}$

Run	I	λ	ni
Al	1.54547	1.74238	1.35978
Ti	1.71326	1.74842	1.48347
Au	1.71396	1.31961	1.61393
СН	0.89452	1.14852	0.49701

<ロ> <四> <四> <日> <日> <日</p>

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

QUB

Heating(IV)

 $T \propto \frac{\beta^{\frac{4}{5}} I_{L}^{\frac{2}{5}} t_{h}^{\frac{2}{5}}}{\lambda^{\frac{4}{5}} n_{i}^{\frac{2}{5}}}$ $T \propto \frac{\beta^{2} I_{L} \tau_{L}}{Z n_{i} \lambda_{L}}$ $T \propto \frac{\beta^{4} I_{L}^{2} \tau_{L}^{2}}{Z^{2} n_{i}^{2} \lambda_{L}^{2}}$

Run	I	λ	n _i
Al	1.41015	1.29582	1.35218
Ti	1.52150	1.36827	1.34533
Au	1.23550	0.60065	1.2817
CH	0.88295	1.11727	0.50418

<ロ> <四> <四> <日> <日> <日</p>

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB)

Heating by FEBs

QUB

Strong Heating Limit

▲ 2 2	
$T \propto \frac{\beta^{\frac{4}{5}} I_L^{\frac{5}{5}} t_h^{\frac{5}{5}}}{\lambda^{\frac{4}{5}} n_i^{\frac{2}{5}}}$	
$T\propto rac{eta^2 I_L au_L}{Z n_i \lambda_L}$	
$T\propto rac{eta^4 l_L^2 au_L^2}{Z^2 n_i^2 \lambda_L^2}$	

Run	I	λ	ni
Al(10eV)	1.17037	1.3973	0.9461
Al(50eV)	1.06293	1.1934	0.7301
Al(100eV)	0.96880	1.1934	0.5593
Ti(10eV)	1.4308	1.4853	1.6153
Ti(50eV)	1.07748	1.177	0.6947
Ti(100eV)	0.97502	1.0041	0.6947
Au(10eV)	1.60688	1.1132	1.2631
Au(50eV)	1.31637	0.7412	0.9605
Au(100eV)	1.24259	0.2969	0.7802

문 문 문

Conclusion

 Assumed Spitzer resistivity for solid targets has shown to be an incorrect assumption

• • • • • • • •

Conclusion

- Assumed Spitzer resistivity for solid targets has shown to be an incorrect assumption
- Results show that these targets are far better modelled via a cold temperature resistivity.

< 17 >

Questions?

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) Heating by FEBs QUB

2

<ロ> <同> <同> < 回> < 回>