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What are Fast Electron Beams?

Generated from j× B heating.

Maxwell-Jüttner distribution

Temperature scales with:

T (MeV ) = 0.511

(√
1 +

I18λ2µm

1.37 − 1

)
Propagate through the target

Generation of Electric and Magnetic Fields

Current Neutrality (jf ≈ −jB)

Return current leads to ohmic heating of the target

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) QUB

Heating by FEBs



Introduction Simulations Results

What are Fast Electron Beams?

Generated from j× B heating.
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Maxwell-Jüttner distribution

Temperature scales with:

T (MeV ) = 0.511

(√
1 +

I18λ2µm

1.37 − 1

)
Propagate through the target

Generation of Electric and Magnetic Fields

Current Neutrality (jf ≈ −jB)

Return current leads to ohmic heating of the target

Rory J. Garland Supervisors: A. P. L. Robinson(RAL) & M. Borghesi(QUB) QUB

Heating by FEBs



Introduction Simulations Results

What are Fast Electron Beams?

Generated from j× B heating.
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Current Work on fast electron transport

Reduction of the fast electron radius

Resistive guiding:

δB

δt
= η∇× jf +

Resistive
Guiding

∇(η)× jf (1)

How fast-electron based heating scales with key experimental
parameters
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Fast electron heating

Fast electron heating makes a large assumption: a Spitzer like
resistivity

T ∝
β
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While this is an accurate representation of a plasma, it does
not clearly represent the cold target.
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Another alternative

By treating the target via cold resistivity, it is possible to
arrive at two different resistivities:

Constant resitivity:

T ∝ β2ILτL
ZniλL

(3)

Square root resistivity:

T ∝
β4I 2L τ

2
L

Z 2n2i λ
2
L

(4)

The aim of this work is to preform simulations on a variety of
targets to see which model is best suited towards it.
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ZEPHYROS

ZEPHYROS - Hybrid-PIC code

Follows Davies(2002) rigid beam model

Calculates electric field from resistive Ohms Law and by
considering current neutrality can arrive at equations for the
Electric and Magnetic fields.

E = −ηjf + η
µ0
∇× B

δB
δt = η∇× jf +∇(η)× jf + η

µ0
∇2B− 1

µ0
∇ηB

Manually enter a resistivity model
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ZEPHYROS(II)
Simulation Setup i

200 × 200 × 200 grid used with cells being 0.1µm in length.

4 × 107 particles

Initial Parameters followed Taranis laser parameters

Beam radius of 10µm.

Angle of Divergence: 60◦(1.047rad).

β =of 0.4

Laser Pulse duration of 5.6×10−13s.

Targets used: Al, Ti, Au & CH
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ZEPHYROS(III)
Simulation Setup ii

Run I(Wcm−2) λ(µm) ni (cm−3) Fast e- Temp (MeV)

A 2×1019 1.053 See table 2 1.61
B 9.25×1019

C 5.55×1019

D 3.33×1019

E 1.2×1019

F 7.2×1018

G 4.32×1018

H 4.875 9.02
I 2.925 5.22
J 1.755 2.95
K 0.6318 0.824
L 0.379 0.388
M 0.227 0.166
N See table 2
O See table 2
P See table 2
Q See table 2
R See table 2
S See table 2
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ZEPHYROS(IV)
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Heating Profiles

1 Can be seen from the 3
figures that the heating
profiles are consistent.
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Heating at 2µm
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Heating(II)
2 µm

T ∝ β
4
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T ∝ β2ILτL
ZniλL

T ∝ β4I 2L τ
2
L

Z2n2i λ
2
L

Run I λ ni
Al 1.17037 1.3973 0.9461
Ti 1.31882 1.4853 1.1457
Au 1.71775 1.6205 1.6167
CH 0.89455 1.1440 0.4761
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Heating(III)
4 µm

T ∝ β
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T ∝ β2ILτL
ZniλL

T ∝ β4I 2L τ
2
L

Z2n2i λ
2
L

Run I λ ni
Al 1.54547 1.74238 1.35978
Ti 1.71326 1.74842 1.48347
Au 1.71396 1.31961 1.61393
CH 0.89452 1.14852 0.49701
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Heating(IV)
6 µm

T ∝ β
4
5 I

2
5
L t

2
5
h

λ
4
5 n

2
5
i

T ∝ β2ILτL
ZniλL

T ∝ β4I 2L τ
2
L

Z2n2i λ
2
L

Run I λ ni
Al 1.41015 1.29582 1.35218
Ti 1.52150 1.36827 1.34533
Au 1.23550 0.60065 1.2817
CH 0.88295 1.11727 0.50418
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Strong Heating Limit

T ∝ β
4
5 I
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2
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4
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2
5
i

T ∝ β2ILτL
ZniλL

T ∝ β4I 2L τ
2
L

Z2n2i λ
2
L

Run I λ ni
Al(10eV) 1.17037 1.3973 0.9461
Al(50eV) 1.06293 1.1934 0.7301
Al(100eV) 0.96880 1.1934 0.5593

Ti(10eV) 1.4308 1.4853 1.6153
Ti(50eV) 1.07748 1.177 0.6947
Ti(100eV) 0.97502 1.0041 0.6947

Au(10eV) 1.60688 1.1132 1.2631
Au(50eV) 1.31637 0.7412 0.9605
Au(100eV) 1.24259 0.2969 0.7802
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Conclusion

Assumed Spitzer resistivity for solid targets has shown to be
an incorrect assumption

Results show that these targets are far better modelled via a
cold temperature resistivity.
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Questions?
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