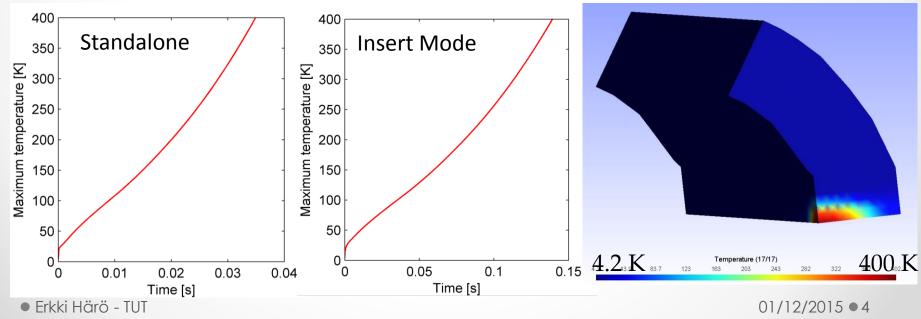
Quench Simulation for CEA Magnet with Bruker Cable

E. Härö(TUT), A. Stenvall(TUT), T. Salmi (TUT) C. Lorin(CEA) and M. Durante(CEA)

Motivation


- Update cos-θ quench simulation results to match Bruker tape properties (Cu/Non-Cu = 0.4)
- Model hot spot temperature evolution
- Estimate the needed detection threshold and maximum delays in the protection system application

Simulation parameters

- Operation temperature 4.2 K
- Ic computed using Fujikura fit with C. Lorin modification where $\alpha = 3.48$ MAT/mm²
 - Field and its direction accounted at each location to compute min Ic
 - Standalone: 14.6 kA -> 20 % Margin leads to operation current of 11680 A
 - \circ Cable J_{op} = 810 A/mm², Coil J_e = 680 A/mm², Copper J = 4100 A/mm²
 - Insert mode: 7.5 kA -> 20% Margin leads to operation current of 6020 kA
 - Cable J_{op} = 420 A/mm², Coil J_e = 350 A/mm², Copper J = 2100 A/mm²
- L = 0.35 mH
- Cable cross-section: 14.4 mm² (bare) 17.08 mm² (insulated)
 - Unit Cell with homogenized mat. props.: 17 % Copper, 42 % Hastelloy, rest insulation / impregnation

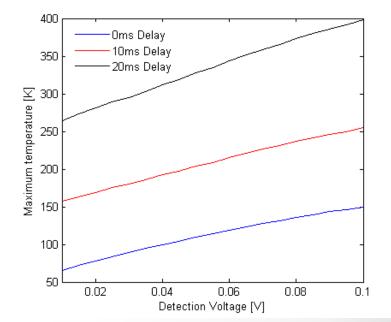

Hot Spot Temperature

- FEM computation using QueST (Härö et al, IEEE TAS 25(2) 2015)
 - Quench initiated by setting Ic to 0 A at 2.5 cm long hot spot
- Hot spot temperature increases rapidly
 - Standalone: 400 K in <u>35 ms</u> (!!)
 - o Insert mode: 400 K in 139 ms
 - (How high hot spot temperatures can be tolerated?)

Hot Spot Temperature Related to Voltage

- Quench detection from resistive voltage
 - Standalone: 100 mV at 112 K
 - Insert mode: 100 mV at 155 K
 - Temperature rise is very fast...

Protection considerations

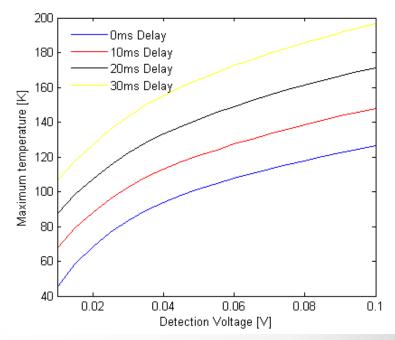

- What is the maximum **validation+switches delay** between quench detection and dump activation?
- Hotspot temperature at detection depends only on v_{det} (Härö et al., IEEE TAS 23(3), 2013)
 - Quench due to locally degraded Jc, short initial normal zone length
- We computed temperature at V_{det} and the temperature increase during the validation+switches delay
 - FEM simulation with QueST
 - Finally, we add the T increase based on the MIITs during the current decay
- Dump resistor sized for 1 kV (@ I_{op})

Standalone

• In standalone I = 11.68 kA -> R_d = 85.6 m Ω

Current decay takes ~4 ms (MIITs 0.3, T_{max} increase ~30 K)

- With 0 ms delay: T_{max} is 60 150 K
- With 20 ms delay: T_{max} range 260 K- 400 K



Insert Mode

• In insert mode I = 6020 A -> R_d = 166.1 m Ω

Current decay takes ~2 ms (MIITs 0.04, T_{max} increase ~3 K)

- Insert mode operation safer due to lower current density
- T_{max} range 120 K 200 K when v_{det} = 100 mV
- Below 200 K even with 30 ms delay

01/12/2015 • 8

Conclusions

- Current decay time is fast with low inductance and large dump
- To stay below 300 K with Bruker cable:
 - Detection at 20 mV + 20 ms delay before dump
 - Detection at 100 mV + 10 ms delay before dump
- Reason to fast temperature increase is high copper current density
 - More copper and less hastelloy would be better
- Insert mode operation safer due to lower J_{op}
- Based on simulations, margins very small... Uncertainties can be critical
 - Need experimental validation for simulated temperatures
- More research needed for longer magnets
 - Current decay will be slower because external extraction not as efficient