UNIVERSITEIT TWENTE.

recapitulation & plans

Peng Gao, Jeroen van Nugteren, Simon Otten, Bram Hesselink, Bas van Nugteren, Sander Wessel, Marc Dhallé

1 December 2015

Experimental program: research questions

I_c (tranverse pressure)

Are the selected HTS materials & cable structures &

able to withstand accelerator-relevant pressure levels?

- ✓ AC loss & magnetization
 - What are the expected loss levels in the cables?
 - What's the influence of strand magnetization & cable current distribution on the field quality?
 - Can we use the AC loss data to guage the inter-strand resistance?

Stability / NZP

- How do conductor MQE and vNZP behave with temperature, current and field?
- How is this influenced by conductor composition & lay-out?
- Can the conductor behavior be extrapolated to cable level?
- What's the role of current (re)distribution in cable stability and quench behavior?

Experimental program: status & plans

- \checkmark I_c (tranverse pressure)
 - \rightarrow Running systematic study on ReBCO Roebel:
 - •10-strands / SP / KIT impregnation

completed

- •<u>15-strands</u> / SP / KIT impregn.
- •15-strands / SP / <u>CERN impregn.</u>
- •15-strands / **BRUK** / CERN impregn.

 \rightarrow Planned study on Bi-2212 Rutherford: aw

awaiting cabling awaiting cabling cable delivery foreseen mid-December assist from CERN requested (impregn. mat. + protocol)

awaiting cables (1bar- & OP HT)

Experimental program: status & plans

AC loss

\rightarrow 4.2K measurements on 15-strand Roebel CERN

$\mu_0 H = 20 \text{mT}$; f = 1Hz UNCALIBRATED Perpendicular field, f = 100mHz Parallel field, f = 0.5Hz UNCALIBRATED 1E-4 0.1 1E-5 numerical mode inductive data calorimetric data trendline H² cycle (uncalibrated) 1E-5 inductive data Loss per cycle (J/cm³) trendline H^a loss per cycle (uncalibrated) trendline H³ 1E-6 0.01 1E-6 1E-7 1E-7 1E-3 per contribution 1E-8 -oss M//H// contribution 1E-8 tota trendline H⊥³ 1E-4 rendline H/ 1E-9 0.01 0.1 0.3 1E-3 0.01 20 80 90 0.1 0 10 30 40 50 60 70 Amplitude $\mu_0 H(T)$ Amplitude $\mu_0 H$ (T) field angle θ with cable plane (deg.)

Quantitative validation numerical EM model; Perpendicular field behavior dominated by strand hsyteresis; Signatures of coupling in parallel field.

→ Follow-up measurements? stand-by, open for suggestions (magnetization loops, pressure dependence,...?)

near-completed

Experimental program

Stability / NZP

 \rightarrow MQE & v_{NZP} @ 4.2K – 50K on 4& 2mm SP <u>strands</u> previous program, completed

v_{NZP} mainly determined by current level I ; validation 1D numerical model

→ MQE & v_{NZP} @ 4.2K – 50K on 2mm BRUK <u>strands</u> → MQE 4.2K on 15-strand BRUK cable?

awaiting strands (plating)

Combination with I_c(pressure)? recycling'