

HTS tape insulation

Nikolaj Zangenberg, Danish Technological Institute Dec 1st, 2015

HTS tape insulation - outline

- Evaluation of new HTS insulation techniques:
 - Epoxy-based Liquid polyimide Sol-Gel
- Study of defects in HTS coil from Danfysik

HTS insulation

DANISH TECHNOLOGICAL INSTITUTE

	Insulation	Pros	Cons
	Kapton/polyimide tape wrapping	Commercially well- established	Not compatible with impregnation
	Fiber glass and kapton wrapping	Well-known from LTS accelerators	Thick (poor Je)
	Fiber glass sock with epoxy impregnation	Simple handling	Thick; problems with epoxy impregnation penetration
	Black varnish (Innost)	Thin; compatible with impregnation	Health and safety issues
	Epoxy (Danfysik, Florida State U)	Compatible with impregnation	Not established commercially?
	Sol-Gel (DTI, FSU)	Thin (good Je)	Not developed
	Liquid polyimide (SuperOx)	Good insulation	Not established commercially?

Liquid based – good candidates for "up-scaling". Not well-suited for Roebel.

SuperOx

>

DANISH TECHNOLOGICAL INSTITUTE

Polyimide layer insulation

SuperOx

- Insulation and tape from SuperOx (2015)
- Thickness ca. 20 µm
- Very good uniformity of insulation

Danfysik

Epoxy + heat conductive filler

HTS tape pulled through liquid epoxy bath and cured.

(also performed at Florida State University).

Danfysik

- Insulation and tape from SuperPower (2012)
- Cu dog-bone at edges (old tape)
- Insulation thickness ca. 25 μm

Sol-Gel coatings at DTI

- Inorganic organic hybrid coatings (organosilane based coatings, sol-gel systems)
- Applied by spraying / dip-coating / paint brush
- Curing between room temperature and 200 °C
- Also performed at Florida State University
- Applied to SuperPower 12 mm wide tape (2014)

crystalline SiO₂ (quartz)

amorph SiO₂ (glass)

Inorganic siloxane network + organic groups and/or NPs

Sol-Gel application process

DANISH TECHNOLOGICAL INSTITUTE

Step 1

The substrate undergoes a cleaning and activation procedure

Step 2

The coating is applied by means of

- spraying
- dipping

• rolling

Step 3

The coating is cured by

- Heating (RT to 200 C)
- UV or IR light

• air drying

Spirany

Breakthrough voltage

Gold masking used to prevent edge effect.

On 4 mm tape (SuperOx, Danfysik) or 12 mm tape (Sol-Gel)

Insulation	Insulation thickness	600 V	1000 V
Polyimide (SuperOx)	25 µm	OK	OK
Epoxy (Danfysik)	20 µm	OK	OK
Sol-Gel (DTI)	6 µm	OK	Fail

Study of defective coil from Danfysik HTS magnet

DANISH TECHNOLOGICAL INSTITUTE

Danfysik demonstration stand-alone HTS dipole magnet Coil layout: 18 coils in block/ellipse design A few of the coils were not able to carry the designated current Defective top coil made available for DTI in EuCARD2 project

Mapping of defects in coil

Metallographic sections (cut, grind, fine polish) Light Optical Microscopy and SEM/EDX

l				J
	4 ़ → → 3	2 = 1		_

Tape/coil delamination

DANISH TECHNOLOGICAL INSTITUTE

Example of delamination (electron microscopy)

Tape/coil delamination

EDS Layered Image 8

DANISH TECHNOLOGICAL INSTITUTE

Please note: The investigated tapes/coil are from 2011-2012. Present day performance is not evaluated.

Coil defect registration

- A) defect (partial delaminiation)
- B) complete delamination

Defect studies - conclusions

DANISH TECHNOLOGICAL INSTITUTE

Complete delaminations occur with some correlation between 1-2 and 3-4 (to a smaller extent). Serious conductor damage. Damage may have be caused by outwards pressure on YBCO layer without mechanical backing from Hastelloy.

No correlation between partial delaminations in coil sections 1-2 and 3-4. Defect origin from section preparation cannot be excluded.

Thank You!

