

H. Bajas

TE-MSC-TF

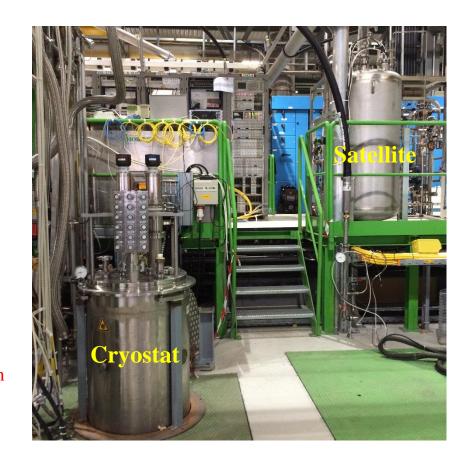
- Feather_0 Magnet
- Variable temperature 20 kA test facility at SM18
- Magnet-Facility connection issues
- Magnet protection strategy
- Data monitoring systems

Feather_0 Magnet

- Magnet characteristics
 - Geometry (90x500mm)
 - HTS
 - easy to be burnt
 - μH inductance
 - Instrumentation
 - Voltage taps, T-sensors array,
 Fiber optic, Hall probe,
 Quench Antenna
 - Spot heater
- Operating conditions

$$- T = [4.2 - 80] K$$

$$-I_{\text{mag}} = [0 - 10000] A$$



Variable temperature 20 kA test facility («Diode» bench)

- Purpose
 - Test of: HTS current leads test, Diodes pulse test,
 - Optical Fiber calibration, others cryo-devices
- 20 kA Power Convertor
 - very low magnet inductance might require fine-tuning of its setting (need check...)
 - Shared with 3 other benches (availability...)
- Cryostat Gas-Liquid Helium supply
 - Helium inlet temperature controlled by
 He gas preparation in an external tank hosting heaters
 - LHe valve opening and heater power regulation based on thermometry and manometry in the He circuit
 - 4.2 100 K stable but need careful set of PID regulation (good experience so far...)
 - Cryostat temperature uniformity not fully insured (need check...)
 - Current leads in the gas (Need shunted-lead test...)

Magnet-Facility connection issues

- Holding plate
 - Need of 20 kg magnet support
 - Rods, thrilled yoke, etc
 - Need to agree on and machining pieces
- Instrumentations
 - Insert able to host several tens of wires
 - Need check for connection interfacing
 - Numbers of sensors (68)

Magnet-Facility connection issues

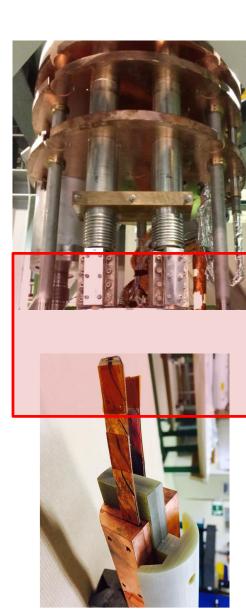
Instrumentations

List of instrumentations/ Feather M0 / 27.11.2015

Device	Туре	Number	Comments	Number of wires total
Coil spot heaters				
Coil end heater	smaller one	2		8
Heater on straight part	larger one	2		8
Each spot heater needs 4 wires (2 for current and 2 for vol	tage).			
Temperature sensors				
Non-calibrated	ccs	40		8
Calibrated	ccs	3		12
Calibrated temperature sensors need 4 wires each (2 for current and 2 for voltage).				
Non-Calibrated temperature sensors are in 2 arrays connected in parallel and need 4 wires each array (2 for current and 2 for voltage).				
Voltage taps				
Current leads		4	Two taps on each lead for redundancy	4
Roebel inside the magnet		4	Two taps on each Roebel for redundancy	4
Hall Probe	TBD	1		4
Hall probes need four wires (2 current and 2 voltage).				
Quench antenna arrays	Array of 5 coils on PCB	4		20
Arrays top to bottom counterwound, this means we have 10 Coils in total in Feather M0. We need 10x2 wires for these coils.				
Acoustic		1 to 3	Need 3 holes for optional locations	???
Optical fiber		1	(Only one survived from impregnation out of 2)	???
	-	•	· ·	Total

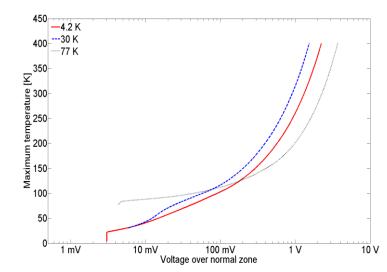
Total

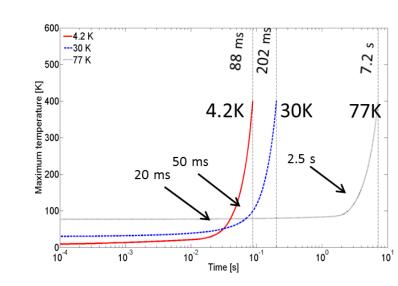
68


Magnet-Facility connection issues

- Powering
 - Joint current-lead to magnet
 - HTS to cylindrical Copper bar with clamping box & Indium sheet
 - The two leads from the magnet should come with the right angle
 - Need to stiffen the two leads (no motion allowed)
 - Need to agree on and machine pieces

- May quench the HTS cables by heat propagation
- Need to optimize the join thermal behavior
- Fast and accurate protection for the connections
 - (extra-voltage taps)




Magnet protection strategy

- Quench detection
 - Based on voltage signal
 - Linked to safety matrix (triggers)
 - Need to define threshold and time window
 - First guess from simulation result

Energy extraction

- With 1-2 m Ω from the powering circuit, the time constant of the current decay with be few tens of ms.
- No need of dump, current turn off trigger

Data Acquisition systems

- PXI-DAQ
 - Acquires voltage taps signal from "Potaim cards" (40 taps)
 - Acquires Temperature (40 sensors)
 - Connection to safety matrix (triggers protection)
 - Baseline for facility connections

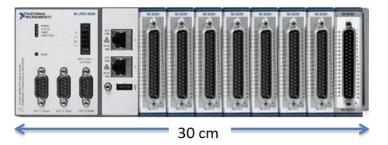
- cRio-FBGA
 - New data acquisition system
 - Low frequency-long aquisition time
 - 112 channels
 - Can produced trigger
 - need connection to Protection System

- Need wiring and cabling work
- Just monitoring at the start

Conclusion

- Feather_0 can be tested in the «Diode Test» Bench
- Use of the «satellite» for Helium inlet liquid/gas temperature control
- Instrumentation connections requieres cabling preparation
- Current lead joint requieres relevant solution
- Current lead in the gas should be tests
- New DAQ has to be implemented in parralel to classic system
- New DAQ asks for important cabling work.
 - → Test in January 2016 before shut-down is challenging
 - → Cryo-shut down from the 1st of February.

Thank you for your attention,



HTS Quench DAQ

NI-CompactRIO

Processor:

667 MHz dual-core ARM 512 MB RAM 1 GB storage NI Linux Real-Time OS

FPGA:

Xilinx Artix-7 2 M cells 224 total

Received at CERN March 2014

7 modules: 16 differential analog inputs each

+/- 200 mV till +/- 10 V input range

7.8 kS/s per channel, 16 bits

1 module: 32 digital outputs

5 V TTL

7 μs response time

Recording:

Continuous streaming of all channels to external 3 TB disk for 12 hours tested.

Also available: **high speed module**4 differential analog inputs, 1 MS/s, 16 bits simultaneous sampling

A similar system is used by the EL group to capture voltage transients on the electrical network caused by EDF switching, thunderstorms and internal load changes.

Adriaan Rijllart November 2015