Impact of microscopic structure on isovector valence shell excitations of nuclei near N=82 <u>HIE-ISOLDE experiments IS546 and IS596</u>

TECHNISCHE UNIVERSITÄT DARMSTADT

Norbert Pietralla, TU Darmstadt

<u>**TU Darmstadt:**</u> N.Pietralla, R.Stegmann, C.Stahl, <u>V.Werner</u>, S. Ilieva, T.Kröll, M.Lettmann, O.Möller, M.Reese, M.Thürauf

<u>University of Sofia:</u> <u>G.Rainovski</u>, D.Kocheva, K.Gladnishki, M.Djongolov

<u>University of Cologne</u>: J.Jolie, A.Blahzev, C.Fransen, N.Warr

et al.

&

ISOLDE- / MINIBALL-Collaborations

Microscopic origin of Quadrupole Mixed-Symmetric States

- Nuclei are two-component quantum systems
- Coupling to symmetric and antisymmetric ("mixedsymmetric") state
- Fingerprint: Strong M1 transition between 2⁺ states
- Predicted by IBM-2
- Microscopic description by:
 - **QPM** N. Lo ludice *et al.*, Phys. Rev. C 77, 044310 (2008)
 - LSSM D. Bianco *et al.*, Phys. Rev. C 85, 034332 (2012)

Experimental approach – Inverse Kinematics Coulomb excitation reactions ANL program

- Background subtraction
- Doppler shift corrections
- Lorentz boost corrections (v~6%c)
- Angular distributions (Gammasphere=17 rings, 17 θ)
- Coulex analysis: Coulex codes (CLX, Gosia)

G.Rainovski, N. Pietralla et al., Phys. Rev. Lett. 96 122501 (2006).

IS546

Coulex of ¹⁴⁰Nd, ¹⁴²Sm

Stabilization of Nuclear Isovector Valence-Shell Excitations

G. Rainovski et al., Phys. Rev. Lett. 96, 122501 (2006)

TECHNISCHE

UNIVERSITÄT DARMSTADT

Motivation: Stabilization of Nuclear Isovector Valence-Shell Excitations – ¹⁴⁰Nd and ¹⁴²Sm

- Single 2⁺ MSS of ¹³²Te, ¹³⁴Xe, ¹³⁶Ba
- Fragmented 2⁺ MSS of ¹³⁸Ce
- QPM and SM reproduce situation in N=80

What is the predictive power?

- QPM: single 2⁺ MSS of ¹⁴⁰Nd
- SM: fragmented 2⁺ MSS of ¹⁴⁰Nd

Need to identify and quantitatively study MSSs of ¹⁴⁰Nd and ¹⁴²Sm

Preparation: REX-ISOLDE experiment IS496

Hitherto method (e.g. ¹³⁸Ce):

- Coulomb excitation at 80-85% CB
- GAMMASPHERE in singles mode
 → Without particle detector
- Beam intensity ~ 10⁹ pps possible
- ¹²C target \rightarrow Inverse kinematics
 - \rightarrow No target excitation
 - \rightarrow Normalization to $2_1^+ \rightarrow 0_{1,gs}^+$ transition $\bullet B(E2;2_1^+)$

But: Stable beams!

Situation for ¹⁴⁰Nd, ¹⁴²Sm:

- Radioactive nuclei
 - → Beam development
 - → Particle detector necessary
- Lower beam energy 60-65% CB (2.85 Mev/u)
- Lower beam intensity
- $B(E2;2_1^+ \rightarrow 0_{1,gs}^+)$ unknown

→ Necessity to measure B(E2)

• previous REX-ISOLDE IS496

Previous REX-ISOLDE experiment IS496 Experimental runs

01.07. – 04.07.2011

- Beam: ¹⁴⁰Nd
- Contamination: ¹⁴⁰Sm
- 2.85 MeV/u (E_{kin} = 399 MeV)
- HRS & RILIS
- Target: ⁴⁸Ti (1.4 mg/cm²) ⁶⁴Zn (1.55 mg/cm²)

28.06. - 30.06.2012

- Beam: ¹⁴²Sm
- Contamination: ¹⁴²Eu, ¹⁴²Pm
- 2.85 MeV/u (E_{kin} = 405 MeV)
- GPS & RILIS
- Target: ⁴⁸Ti (1.4 mg/cm²) ⁹⁴Mo (2 mg/cm²)

Previous REX-ISOLDE experiment IS496 Results

- Beams for ¹⁴⁰Nd, ¹⁴²Sm (primary target material: Ta) have been developed, tested and used successfully
- Including RILIS ionization scheme
- Beam intensities ~ $10^5 10^6$ pps

REX-ISOLDE experiment IS496 Results

C. Bauer et al., Phys. Rev. C 88, 021302 (2013)

R. Stegmann et al., Phys. Rev. C 91, 054326 (2015)

Preparation done: Proceed to IS546 ¹⁴⁰Nd and ¹⁴²Sm @ HIE-ISOLDE

Is sub-shell closure at Z=58 responsible for fragmentation? Or does the increasing valence space dissolve the isovector structure?

HIE-ISOLDE (~4 MeV/u) enables us now to identify and quantitatively study MSSs of ¹⁴⁰Nd and ¹⁴²Sm: IS546

IS596

Coulex of ¹³⁶Te

B(E2) "anomaly" in ¹³⁶Te

J. Terasaki et al., PRC 66, 054313 (2002)

Configurational Isospin Polarization ¹³²**Te – first MS observation with RIB**

Configurational Isospin Polarization the case of ¹³²Te – no CIP

Shell model calculations (A. Gargano, A. Covello)

Interaction:

 V_{low-k} from the CD-Bonn potential, core – ¹³²Sn;

Space:

 $\{0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}\}$ for both protons and neutrons;

Observable	Experiment	Shell Model		
B(E2; 2⁺ ₁ →0⁺ ₁) [Wu]	10(1)	7.8		
μ (2 + ₁) [μ _N]	+0.92(10)	+0.68		
B(E2; 2⁺ ₂ →0⁺ ₁) [Wu]	0.5(1)	0.21		
B(E2; 2⁺ ₂ →2⁺ ₁) [Wu]	0 ÷ 20	0.24		
B(M1; 2⁺ ₂ →2⁺ ₁) [μ _N ²]	>0.23	0.20		

 $\begin{aligned} |0^{+}_{1}\rangle &= 0.94 \ |0^{+}_{1}\rangle_{\nu} |0^{+}_{1}\rangle_{\pi} &+ \dots \\ |2^{+}_{1}\rangle &= 0.66 \ |0^{+}_{1}\rangle_{\nu} |2^{+}_{1}\rangle_{\pi} & + \dots \\ |2^{+}_{2}\rangle &= 0.58 \ |0^{+}_{1}\rangle_{\nu} |2^{+}_{1}\rangle_{\pi} & + \dots \\ 0.63 \ |2^{+}_{1}\rangle_{\nu} |0^{+}_{1}\rangle_{\pi} + \dots \\ 0.63 \ |2^{+}_{1}\rangle_{\nu} |0^{+}_{1}\rangle_{\pi} + \dots \\ |2^{+}_{1}\rangle_{\pi} &= |0^{+}_{1}; \ ^{130}Sn\rangle \\ |2^{+}_{1}\rangle_{\pi} &= |0^{+}_{1}; \ ^{134}Te\rangle \\ |2^{+}_{1}\rangle_{\pi} &= |2^{+}_{1}; \ ^{134}Te\rangle \end{aligned}$

Almost balanced proton-neutron characters, i.e. no CIP (J. D. Holt *et al.*, Phys. Rev. C **76**, 034325 (2007))

CIP case predicted: 136Te

Skyrme-QPM: A.Severyukhin, N.Arsenyev, N.Pietralla, V.Werner, PRC 90, 011306(R) (2014)

 2_1^+ and 2_2^+ have significant E2 \rightarrow 1-phonon statesStrong M1 between them $\rightarrow 2_2^+ = 2_{1,MS}^+$

 $[2_1^+]_{QRPA} = \sim 86\%$ Neutron, $[2_2^+]_{QRPA} \sim 68\%$ Proton (opposite pn-phase)

	$\lambda_i^{\pi} = 2_i^+$	Energy (MeV)		Structure	$B(E2; 0^+_{gs})$ (e ² fm)	$\rightarrow 2_i^+)$ ⁴)	$\begin{array}{c} B(E2;2^+_i \to 2^+_1) \\ (\mathrm{e}^2 \mathrm{fm}^4) \end{array}$		$\begin{array}{c} B(M1;2^+_i \rightarrow 2^+_1) \\ (\mu^2_N) \end{array}$	
		Expt.	Theory		Expt.	Theory	Expt.	Theory	Expt.	Theory
³⁶ Te	2^{+}_{1}	0.606	0.92	97%[2 ⁺] _{ORPA}	1220 ± 180	1120				
	2^+_2	1.568	2.01	94%[2 ⁺] _{QRPA}		740]	20		0.51

Shell Model:

- N. Shimizu et al., PRC 70, 054313 (2004);
- N. Lo ludice et al., Phys. Rev. C 77, 044310 (2008);
- D. Bianco et al., Phys. Rev. C 84, 024310 (2011);
- D. Bianco et al., Phys. Rev. C 85, 034332 (2012);
- D. Bianco *et al.*, Phys. Rev. C 86, 044325 (2012);

D. Bianco *et al.,* Phys. Rev. C 88, 024303 (2013);

Strongly broken *p-n* exchange symmetry

¹³⁶Te: 2₁⁺ neutron dominated
2₂⁺ - "MS state", proton domin. "Smoking gun" for reduced pninteraction for cause of Te anomaly

HIE-ISOLDE experiment IS546 42 shifts recommended by INTC

 Model predictions for ¹⁴⁰Nd: SM - Fragmented MSS QPM: Single isolated MSS Shell stabilization of MSSs?

TECHNISCHE UNIVERSITÄT

DARMSTADT

- Beam: ¹⁴⁰Nd and ¹⁴²Sm RILIS beams developed and tested!
- Beam energy 3.62 MeV/u for ⁵²Cr target or 4.5 MeV/u for ²⁰⁸Pb target (85% CB)

Scheduling

- G. Rainovski is CERN fellow in fall 2016
- Ideally, we would like to run both experiments a.s.a.p.
- ¹⁴⁰Nd, ¹⁴²Sm is straight forward (42 shifts)
- ¹³⁶Te is scientifically more urgent (9 sh.; 3 sh. beam + 6 sh. production)
- Te beam needs further development
- status of HIE-ISOLDE accelerator module?
- Thank you!

Backup slides

REX-ISOLDE experiment IS496 Contamination analysis

¹⁴⁰Nd

Beam contamination of ¹⁴⁰Sm

 Treatment via comparison of laser on / laser off run ¹⁴²Sm

- Contamination of ¹⁴²Eu and ¹⁴²Pm (a)400300 200Counts per keV 1000 400 (b) 300 2001000 1200 1400 600 800 1000 Energy [keV]
- Treatment via decay analysis at beginning and end of experiment

¹⁴⁰Nd status

Evolution of the one-phonon 2⁺_{1,ms} in N=80 isotones

$$E \begin{bmatrix} 2^{+}_{\nu} & 2^{+}_{ms} \\ 2^{+}_{\pi} & 2^{+}_{nv} \\ 2^{+}_{\pi} & 2^{+}_{nv} \\ 2^{+}_{\pi} & 2^{+}_{nv} \\ 2^{+}_{nv} & 2^{+}_{nv} \\ k_{\pi\nu} = \beta \sqrt{N_{\pi}N_{\nu}} \\ k_{\pi\nu} = \beta \sqrt{N_{\pi}N_{\nu}}$$

01/02/16 | HIE-ISOLDE Experiments Workshop | Prof. Dr. Dr. h.c. Norbert Pietralla | Technische Universität Darmstadt

Configurational Isospin Polarization

protons and neutrons contribute about equally: large mixing $|a_i| \approx |b_i|$

imbalance in proton and neutron contributions: small mixing $|a_i| \neq |b_i|$

observables which are sensitive to p/n content: B(E2)'s and M1