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The Presentation in a Nutshell

• Many new physics extensions of the standard model predict time variations 
of basic physics parameters such as the Quantum Chromodynamic Scale 
Λ𝑄𝐶𝐷, the Higgs Vacuum Expectation Value ν, and the Yukawa couplings ℎ𝑖. 
Hard to measure directly.

• The proton to electron mass ratio μ and the fine structure constant α are 
two dimensionless fundamental constants that are functions of these 
parameters.

• Any change in the basic physics parameters induces changes in μ and α. 
Fairly easy to measure directly.

• Astronomical observations have established stringent limits on the time 
variation of μ and α at look back times on the order of the age of the 
universe. Time base only available to astronomical observations.

• These limits in turn establish limits on the time variation of Λ𝑄𝐶𝐷, ν and h. 
Limits on the order of 10-5 or smaller at greater than half the age of the 
universe.



Outline of the talk
• What are the astronomical observational constraints on the time variation 

of the fundamental constants μ and α?
• What is the relationship between the variation of the physics parameters 
Λ𝑄𝐶𝐷, ν and h and the fundamental constants μ and α?

• What is the form of the derived constraints on the physics parameters?
• Use an example model to produce concrete limits?
• How do these limits evolve with time?
• Show the link between μ and α and the dark energy equation of state w.

• How does Λ𝑄𝐶𝐷, ν and h vary with time in a thawing and freezing 
quintessence cosmology?

• What is the predicted present day rate of change of Λ𝑄𝐶𝐷, ν and h for a 
quintessence cosmology?

• Make the time stability of fundamental constants a standard test for new 
physics and cosmologies.



Alpha and Mu

𝛼 =
2𝜋𝑒2

ℎ𝑐
𝜇 =

𝑚𝑝

𝑚𝑒
=

As its name implies α is measured by the fine 
structure splitting in atomic spectra.

The proton to electron mass ratio is measured by its 
effect on the spectra of molecules (RIT 1975). An 
example is given in the following talk.



Observational Constraints on the Time 
Variation of μ and α

• Astronomical observations of atomic and molecular spectra in the 
early universe provide limits on the time variation of μ and α at 
lookback times on the order of the age of the universe.

• There is no established observed change in μ at this time.

• Although there are reports of both temporal and spatial variations in 
α these reports have not been confirmed and recent observations 
have established limits on time variations significantly below the 
reported changes. (See Plenary talks by Webb and Murphy on Thursday)

• For the purposes of this presentation the recent limits on the time 
variation of a are accepted and no time variation of α is assumed.



Proton to Electron Mass Ratio, μ, Constraints
• Optical observations of redshifted H2 electronic transitions

• Lyman and Werner bands
• Absorption lines of cold H2 from the ground electronic and vibrational states to a 

higher electronic state with varying vibrational and rotational states.
• Redshifts from 2-4
• Constraints on the order of 

∆𝜇

𝜇
≤ 𝑓𝑒𝑤 𝑥 10−6

• Only 10 systems have been analyzed

• Radio observations of absorption lines in cold gas at moderate redshifts
• Methanol and Ammonia  absorption lines with high sensitivity to μ
• Redshifts from 0.5-0.9 (greater than half the age of the universe)
• Constraints on the order of 

∆𝜇

𝜇
≤ 10−7 (primary constraint)

• Primary constraint 
∆𝜇

𝜇
≤ 0.29 ± 1.0 𝑥10−7 at a redshift of 0.88582 (Bagdonaite et 

al. 2012 and Kanekar et al. 2014)
• Only two systems have been analyzed



H2 Energy Levels

Overlap areas are
Very important



Observational Constraints on 
Δμ

μ
The primary constraint is 

∆𝜇

𝜇
≤ (2.9 ± 5.7)𝑥10−8 at z = 0.88582 

Bagdonaite et al. 2013 and Kanekar et al. 2014 with methanol



Fine Structure Constant a Constraints

• Optical observations of multiple fine structure splittings in a large 
number of systems (many multiplet method)
• Several thousand systems measured with many hundred at high accuracy but 

most spectra were taken for other reasons with UVES and HiRes.

• Recently dedicated programs to measure a with high accuracy have been 
implemented.

• The constraints on 
∆𝛼

𝛼
from Murphy, Malec and Prochaska 2016 are used in 

this study.

•
∆𝛼

𝛼
= 0.4 ± 1.7 𝑥10−6 at an average redshift of 1.54 (9.4 gigayear lookback)

• The 
∆𝛼

𝛼
constraint is an order of magnitude looser than the radio 

∆𝜇

𝜇
constraint.



Constraints for this study

∆𝛼

𝛼
= 0.4 ± 1.7 𝑥10−6 at an average redshift of 1.54

∆𝜇

𝜇
= 0.29 ± 1.0 𝑥10−7 at a redshift of 0.88582

These limits are all 1s limits and can be characterized as controversial, 

particularly the 
∆𝛼

𝛼
limit, but they serve as a basis for the method 

presented in the following.



Connecting 
∆𝜇

𝜇
and 

∆𝛼

𝛼
to 

∆Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
, 
Δ𝜈

𝜈
and Δℎ

ℎ

Λ𝑄𝐶𝐷 = QCD Scale, 𝜈 = Higgs VEV and ℎ = Yukawa couplings

Although m and a are fundamental constants their values depend on the values of 
the physics parameters Λ𝑄𝐶𝐷, 𝜈 and ℎ.

We assume in the following that even though the parameters are allowed to vary 
with time the Standard Model relations between the parameters and the constants 
still hold.

The results are model dependent to some degree and as such they are tests of the 
models.

The relations are meant to be restrictions on the parameter space available to the 
models.



𝑑𝜇

𝜇
as a Function of QCD, Higgs and Yukawa

Any change in the proton to electron mass ratio should depend on the basic 
physics parameter that determine the proton and electron mass.
𝑑μ

μ
=

𝑑𝑚𝑃

𝑚𝑃
−

𝑑𝑚𝑒

𝑚𝑒

The electron is easy 𝑚𝑒 = ℎ𝑒ν,   
𝑑𝑚𝑒

𝑚𝑒
= 
𝑑ℎ𝑒

ℎ𝑒
+

𝑑ν

ν

For the proton 
𝑑𝑚𝑃

𝑚𝑃
= a

𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
+ b(

𝑑ℎ∗

ℎ
+

𝑑ν

ν
) (Coc et al. 2007)

where a and b are scalars of order unity and a + b = 1.  

∴
𝑑μ

μ
= a

𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
+(b−1) (

𝑑ℎ

ℎ
+

𝑑ν

ν
) = a[

𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
− (

𝑑ℎ

ℎ
+

𝑑ν

ν
)]

*Assumes that 
𝑑ℎ𝑖

ℎ𝑖
is the same for all Yukawa couplings ℎ𝑖

ℎ𝑒 is the electron Yukawa coupling
ν is the Higgs VEV and Λ𝑄𝐶𝐷 is the QCD scale



𝑑𝛼

𝛼
as a Function of QCD, Higgs and Yukawa

The fine structure constant α has a different dependence on the 
particle physics parameters given by
𝑑𝛼

𝛼
=

1

𝑅
[
𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
−

2

9
(
𝑑𝜈

𝜈
+

𝑑ℎ

ℎ
)] again from Coc et al. 2007.  

R is a constant that is dependent on the particular GUT theory invoked 

as is the factor of 
2

9
.  R is a function of the beta function coefficients 𝑏𝑖

which at the unification scale become unified to a single value 𝑏𝑈. At 

that scale 𝑅 =
2𝜋

9𝛼

𝑏𝑈+3
8

3
𝑏𝑈−12

.  When the magnitude 𝑏𝑢 becomes large 𝑅

approaches the value 36 which will be used in the example presented 
later.



Solving for 
𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷

Now have two equations in 
𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
and (

𝑑ℎ

ℎ
+

𝑑ν

ν
)

𝑑μ

μ
= a[

𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
− (

𝑑ℎ

ℎ
+

𝑑ν

ν
)]

𝑑𝛼

𝛼
=

1

𝑅
[
𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
−

2

9
(
𝑑𝜈

𝜈
+

𝑑ℎ

ℎ
)]

Can solve for 
𝑑Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
𝒅𝜦𝑸𝑪𝑫
𝜦𝑸𝑪𝑫

=
𝟗𝑹

𝟏𝟏

𝒅𝜶

𝜶
−

𝟐

𝟏𝟏𝒂

𝒅𝝁

𝝁



Can Also Solve for (
𝑑ℎ

ℎ
+

𝑑ν

ν
)

(
𝑑ℎ

ℎ
+
𝑑ν

ν
) =

9

11
(𝑅

𝑑𝛼

𝛼
−
1

𝑎

𝑑𝜇

𝜇
)

Without more information there are not solutions for 
𝑑ℎ

ℎ
and 

𝑑ν

ν
independently, however, ν and ℎ have a model dependent relationship

𝜈 = 𝑀𝑃𝑙exp(−
8𝜋2𝑐

ℎ𝑡
2 ) where 𝑀𝑃𝑙 is the Planck mass ℎ𝑡 is the Yukawa 

coupling for the top quark and 𝑐 is a constant of order unity (Coc et al. 07). 
This leads to 

𝑑𝜈

𝜈
=

158𝑐

ℎ2
𝑑ℎ

ℎ
≈ 160

𝑑ℎ

ℎ
= 𝑆

𝑑ℎ

ℎ

Again assuming 
𝑑ℎ𝑖

ℎ𝑖
=

𝑑ℎ

ℎ
for all 𝑖 and that 𝑆 is a model dependent 

parameter.



Model Dependent Solution for 
𝑑𝜈

𝜈

From the previous slide 
𝑑ℎ

ℎ
=

1

𝑆

𝑑𝜈

𝜈
therefore

(1+
1

𝑆
)
𝑑ν

ν
=

9

11
(𝑅

𝑑𝛼

𝛼
−
1

𝑎

𝑑𝜇

𝜇
)

for a solution involving the model dependent parameters 𝑅, 𝑆 and 𝑎.



Observational Limits on the Time Variation of 
Λ𝑄𝐶𝐷

•
𝑑𝛬𝑄𝐶𝐷

𝛬𝑄𝐶𝐷
=

9𝑅

11

𝑑𝛼

𝛼
−

2

11𝑎

𝑑𝜇

𝜇

•
∆𝛼

𝛼
= 0.4 ± 1.7 𝑥10−6

•
∆𝜇

𝜇
= 0.29 ± 1.0 𝑥10−7

•
𝑑𝛬𝑄𝐶𝐷

𝛬𝑄𝐶𝐷
≤ (±1.7𝑥10−6)

9𝑅

11
− (±1.0𝑥10−7)

2

11𝑎

• The limit is model dependent in 𝑅 and 𝑎.

• Need to examine a typical model



The Model of Coc et al. 2007

• The example is from: Coc, Nunes, Olive, Uzan & Vangioni 2007 Phys. Rev. D., 76, 023511 

• The model parameters are R = 36, a = 0.76, b = 0.24, S = 160

•
𝑑𝛬𝑄𝐶𝐷

𝛬𝑄𝐶𝐷
≤ ±1.7𝑥10−6 29.5 − ±1.0𝑥10−7 0.24 = ±5.0𝑥10−5

• The look back time is ≈ 7 gigayears which gives a linear time 

evolution of 
ሶΛ

Λ
≤ 7𝑥10−15 per year.

• The constraint is dominated by the loose limit on 
∆𝛼

𝛼
.

• The parameter a is generally agreed to be close to 1 but different 
models have a wide range of R.



Limits on 
∆Λ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
as a function of 𝑅



Observational Limit on the Higgs VEV (ν) and 
Yukawa Coupling (h) Variation

𝑑ν

ν
= (

𝑆

𝑆+1
)
9

11
(𝑅

𝑑𝛼

𝛼
−

1

𝑎

𝑑𝜇

𝜇
)=(

160

161
)
9

11
(36

𝑑𝛼

𝛼
−

1

0.76

𝑑𝜇

𝜇
)

The result is essential independent of 𝑆 for large 𝑆

𝑑ν

ν
= 29.3

𝑑𝛼

𝛼
− 1.07

𝑑𝜇

𝜇
= ±5.0𝑥10−5

𝑑ℎ

ℎ
=
1

𝑆

𝑑𝜈

𝜈
= ±3.1𝑥10−7

Again for a look back time of 7 gigayears



Model Dependent a Limits

• The observational limits are essentially independent of the limits on 
Δ𝜇

𝜇
due to the order of magnitude looser limit on 

Δ𝛼

𝛼
and the order of 

magnitude larger coefficient of 
Δ𝛼

𝛼
.

• The model however predicts a smaller change in 𝛼 than in 𝜇 by a 
factor of 

1

𝑅
.

• The model predicted change in 𝛼 is 
Δ𝛼

𝛼
=

1

𝑅

Δ𝜇

𝜇
=

1

36

Δ𝜇

𝜇
= 2.8𝑥10−9

• The constraint is of course consistent with the observational results 
but imposes a much stricter limit on 

Δ𝛼

𝛼
.



Constraints with the Model Dependent Limit on 
Δ𝛼

𝛼

• Observational 
∆𝜇

𝜇
≤ ±1.0𝑥10−7

• Modeled 
∆𝛼

𝛼
≤ ±2.9𝑥10−9

•
ΔΛ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
≤ ±6.2𝑥10−8

•
∆𝜈

𝜈
≤ ±2.5𝑥10−8

•
∆ℎ

ℎ
≤ ±1.6𝑥10−10

• 7 gigayear look back time



Quick Derivation of m and a Evolution in a Rolling Scalar Field

• For a linear (first term of Taylor series) coupling with a scalar field 𝜙
𝑑𝜇,𝛼

𝜇,𝛼
= 𝜍𝜇,𝛼𝜅(𝜙 − 𝜙0),  𝜅2 = 8𝜋𝑚𝑃

−2 and 𝜍𝜇,𝛼is the coupling constant

• The dark energy EoS 𝑤 also is a function of 𝜙

• 𝑤 + 1 =
(𝜅 ሖ𝜙)2

3Ω𝜙
, ሖ𝜙 where the prime indicates 

𝑑

𝑑 𝑙𝑛𝑎
Nunes & Lidsey* (2004) 

• Expressing 
𝑑𝜇,𝛼

𝜇,𝛼
in terms of 

𝑑

𝑑 𝑙𝑛𝑎
we get 

𝑑 ሖ𝜇, ƴ𝛼

𝜇,𝛼
= 𝜍𝜇,𝛼 3Ω𝜙(𝑤 + 1)

• The evolution is then 
Δ𝜇

𝜇
= 𝜍𝜇 1׬

𝑎
3Ω(𝑥)𝜙(𝑤(𝑥) + 1)𝑥−1𝑑𝑥 between as scale 

factor of 1 (present time) and 𝑎, with a similar equation for 𝛼.

• The evolution of the dark energy EoS 𝑤 and the ratio of the dark energy density 
to the critical density Ω𝜙 is determined by the chosen cosmology.

• In the following freezing and thawing quintessence is used as the example.



Quintessence Evolutionary Tracks of 
ΔΛ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
and  

∆𝜈

𝜈

• The evolutionary tracks of Λ𝑄𝐶𝐷 and ν are functions of the evolution 
of 𝛼 and 𝜇 and vice versa.

• For a given cosmology the evolution of 𝛼 and 𝜇 can be calculated.

• As example a freezing and a thawing quintessence cosmology is 
examined.
• In a freezing cosmology the dark energy equation of state w “freezes” toward 

minus one.
• In a thawing cosmology the dark energy equation of state w “thaws” away 

from minus one.

• The evolution of the constants for this cosmology was considered 
previously (RIT12)



Basic Methods
• For the Quintessence cosmology Ω𝜙 = [1 + Ω𝜙0

−1 − 1 𝑎−3]−1

• The equation of state is 1 + 𝑤 =
1

3
𝜆0
2[

1

Ω𝜙
− (

1

Ω𝜙
− 1) 𝑡𝑎𝑛ℎ−1 Ω𝜙 + 𝐶2 ]2 where 𝜆0 and 𝐶 are 

based on slow roll and initial conditions.  Here we set 𝜆0 = 0.1 for 
slow roll and 𝐶 = 1 for the freezing cosmology and 𝐶 = 0 for the 
thawing cosmology.  The evolution of either m or a is found by 
numerically integrating

Δ𝜇

𝜇
= 𝜍𝜇න

1

𝑎

3Ω𝜙(𝑥)(𝑤(𝑥) + 1)𝑥−1𝑑𝑥

for a range of scale factors 𝑎 and a similar equation for a.



Freezing and Thawing Evolution of m and a



Example Cases and Cosmologies
• Three cases are considered for both freezing and thawing 

quintessence:
• A case where the coupling constants are equal 𝜍𝜇 = 𝜍𝛼 = 10−6

• A case where the coupling constants are set to match the observational limits.

• A case where the coupling constants are set to match the model dependent 
limits.

Case Cosmology ൗ𝚫𝜶
𝜶 ൗ𝚫𝝁

𝝁
𝝇𝜶 𝝇𝝁

Equal 𝜍 Freeze NA NA 10−6 10−6

Equal 𝜍 Thaw NA NA 10−6 10−6

Obs. limits Freeze 4.0x10−7 2.9x10−8 4.7x10−6 9.3x10−7

Obs. limits Thaw 4.0x10−7 2.9x10−8 1.5x10−5 1.3x10−6

Model limits Freeze 8.0x10−10 2.9x10−8 9.4x10−9 9.3x10−7

Model limits Thaw 8.0x10−10 2.9x10−8 3.0x10−8 1.3x10−6



Evolution of 
ΔΛ𝑄𝐶𝐷

Λ𝑄𝐶𝐷



Evolution of 
∆𝜈

𝜈

Δℎ

ℎ
=
1

𝑆

Δ𝜈

𝜈



Current Rates of Change of Λ𝑄𝐶𝐷 and 𝜈

• The current rate of change of m or a per ln(𝑎) is

• 𝑟𝜇,𝛼 = 𝜍𝜇,𝛼 3Ω𝜙(𝑥)(𝑤(𝑥) + 1)𝑥−1 at 𝑥 = 𝑎 = 1

• The current rate of change of m or a per year is 𝐻0𝑟𝜇,𝛼 with 𝐻0 in 
units of 𝑦𝑒𝑎𝑟𝑠−1.

• Inserting those rates into the equations for 
ΔΛ𝑄𝐶𝐷

Λ𝑄𝐶𝐷
and 

∆ν

ν
in terms of 

Δ𝜇

𝜇
and 

Δ𝛼

𝛼
gives the current rates of change 

ሶΛ

Λ
and 

ሶ𝜈

𝜈
per year.



ሶΛ

Λ
and 

ሶ𝜈

𝜈
per Year

Case Cosmology ሶΛ

Λ
𝒑𝒆𝒓 𝒚𝒆𝒂𝒓

ሶ𝜈

𝜈
per year

Equal 𝜍 Freeze -4.5x10-17 7.7x10-19

Equal 𝜍 Thaw -1.2x10-16 2.1x10-18

Obs. limits Freeze -2.3x10-16 -4.0x10-18

Obs. limits Thaw -1.8x10-15 -4.4x10-17

Model limits Freeze 3.4x10-19 1.9x10-18

Model limits Thaw 1.3x10-18 7.1x10-18



Summary

• Changes in the Quantum Chromodynamic Scale, the Higg VEV and the 
Yukawa couplings physics parameters produce changes in the 
fundamental constants 𝜇 and 𝛼 that are observable in the early 
universe.

• The lack of any observable changes in 𝜇 and 𝛼 put quantitative 
constraints on theories the predict time variation of the physics 
parameters.

• Although there are legitimate concerns about the validity of the 
Standard Model and ΛCDM cosmology the parameter space for 
alternative theories is significantly constrained.



Conclusion

•An important requirement for any new physics or 
cosmology is the prediction of the rate of variance of 
the fundamental constants and a comparison of these 
predictions with observational and laboratory limits.


