Less simplified models of dark matter for direct detection and the LHC

Arghya Choudhury

Consortium for Fundamental Physics Department of Physics and Astronomy University of Sheffield, UK

September 15, 2016

"Varying Constants and Fundamental Cosmology" - VARCOSMOFUN'16

University of Szczecin, Poland

Arghya Choudhury

- Brief introduction to Simplified Dark Matter Models.
- Combining Two Models.
- Results.
- Conclusions.

Talk based on : A. Choudhury, K. Kowalska, L. Roszkowski, E. M. Sessolo, A. J. Williams; JHEP **1604**, 182 (2016) [arXiv:1509.05771].

- Complete Models like mSUGRA or cMSSM etc. (the lightest neutralino \rightarrow good candidate for WIMP)
- Effective field theory (EFT) framework → advantage of providing bounds in terms of a common contact operator → a good approximation as long as the interaction is mediated by particles with masses well above the collision energy.
- Simplified Dark Matter Models.
 - Vector mediator $\rightarrow Z'$.
 - Scalar mediator or Higgs portal \rightarrow *H*.
 - Scalar t-channel mediators $\rightarrow \tilde{\mathbf{q}}$.

Goodman and Shepherd (2011); J. Abdallah et al. (2014), (2015)

Models with Vector mediator:

- The mediator \rightarrow leptophobic Z'.
- The Dirac fermion singlet DM particle $\chi \to {\rm couples}$ to the new gauge boson, Z'.
- Z' is assumed to have negligible mixing with the Z boson of the SM, and to not couple to the SM leptons.

The terms in the Lagrangian relevant to DM searches

$$\mathcal{L} \supset Z'_{\mu} ar{\chi} \gamma^{\mu} (g^{V}_{\chi} - g^{A}_{\chi} \gamma_{5}) \chi + \sum_{i} Z'_{\mu} ar{q}_{i} \gamma^{\mu} (g^{V}_{q} - g^{A}_{q} \gamma_{5}) q_{i}$$

- Described By 4 (3) parameter $ightarrow \left\{ m_\chi, m_{Z'}, g_\chi^V, g_q^V
 ight\}$
- We limit ourselves \rightarrow WIMPs are produced at the LHC through an on-shell mediator: $m_{Z'} > 2m_{\chi}$.

• In this regime the production cross section and mediator width are largely independent of the spin structure of the couplings, so that we can set either $g_{\chi/q}^V$ or $g_{\chi/q}^A$ to zero without loss in generality.

Arghya Choudhury

- The Dirac fermion singlet DM particle $(\chi) \rightarrow$ couples to a new singlet real scalar (s).
- Scalar mediators have also been studied extensively in literature.

The terms in the Lagrangian relevant to DM searches

$$\mathcal{L} \supset -y_\chi ar{\chi} \chi s - \mu_s s |\Phi|^2 - \lambda_s s^2 |\Phi|^2$$

• y_{χ} is the Yukawa coupling between the DM and the singlet • μ_s is a mass term \rightarrow induces mixing between s and the SM Higgs doublet $\Phi \rightarrow$ gives rise to the Higgs boson after EWSB.

• Φ develops the SM VEV $v: \Phi \rightarrow 1/\sqrt{2} (0, v + h)^T$, which can be determined in terms of the SM mass and quartic couplings.

Scalar mediator/Higgs portal:

- The μ_s and λ_s Lagrangian terms produce an off-diagonal component in the (h, s) mass matrix.
- The mass matrix is diagonalized by a mixing matrix parametrized by a mixing angle θ

$$\left(\begin{array}{c}h_{\rm SM}\\H\end{array}\right) = \left(\begin{array}{c}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{array}\right) \left(\begin{array}{c}h\\s\end{array}\right)$$

After diagonalization the relevant terms for DM phenomenology

$$\mathcal{L} \supset -y_{\chi} \left(h_{\mathrm{SM}} sin heta + H \cos heta
ight) ar{\chi} \chi - rac{1}{\sqrt{2}} \left(h_{\mathrm{SM}} cos heta - H \sin heta
ight) \sum_{f} y_{f} f ar{f}$$

• In the spirit of phenomenology one can trade λ_s and μ_s for θ and m_H to produce a simplified model of DM. •The DM simplified model is finally described by 4 parameters, $\{m_{\chi}, m_H, \sin 2\theta, y_{\chi}\}$

Arghya Choudhury

- For $m_H \approx m_{h_{\rm SM}}$ the contributions due to $h_{\rm SM}$ and H cancel out and $\sigma_p^{\rm SI}$ is suppressed.
- This creates a blind spot for Direct Detection.

Scalar t-channel mediators:

- Scalar t-channel mediators \rightarrow charged under SU(3).
- Borrow the notation "squarks" $(\boldsymbol{\tilde{q}})$ as in MSSM.
- Our model is not necessarily SUSY based.
- We assume universality between the first two generations for the masses and couplings to the DM $(m_{\tilde{q}},\,g_{\tilde{q}}).$

The terms in the Lagrangian relevant to DM searches

$$\mathcal{L} \supset \sum_{i=1,2} g_{\tilde{q}} \left(\tilde{u}_{i,R}^{\dagger} \bar{\chi} \mathsf{P}_{\mathsf{R}} u_{i} + \tilde{u}_{i,L}^{\dagger} \bar{\chi} \mathsf{P}_{\mathsf{L}} u_{i} + \tilde{d}_{i,R}^{\dagger} \bar{\chi} \mathsf{P}_{\mathsf{R}} d_{i} + \tilde{d}_{i,L}^{\dagger} \bar{\chi} \mathsf{P}_{\mathsf{L}} d_{i} \right) + \, \mathrm{h.c.}$$

• We assume that the stability of the DM is protected by a discrete symmetry similar to R-parity.

• This simplified model is described by 3 parameters:

 $\{m_{\chi},m_{\tilde{q}},g_{\tilde{q}}\}$

Methodology and analysis of the combined models:

• Model 1. Combining vector and Higgs portal mediators. (6 free parameters: $m_{\chi}, m_{Z'}, m_H, \theta, y_{\chi}, g_{\chi/q}^V$)

Model 2. Combining Higgs portal and *t*-channel mediators.
 (6 free parameters: m_χ, m_ğ, m_H, θ, y_χ, g_ğ)

Model 3. Combining vector and t-channel mediators.
 (6 free parameters: m_X, m_{q̃}, m_{Z'}, g^V_X, g^V_q, g_{q̃})

Methodology and analysis of the combined models:

 LHC Bounds : Mono-jet searches, searches with jets + missing E_T (MET), invisible branching fraction of the Higgs boson, and bounds on new heavy Z' resonances from the tt and di-jet invariant mass distributions. • Bounds from DD searches.
 Implemented by: FeynRules,CalcHEP, micrOMEGAs, MadGraph5_aMC@NLO, PYTHIA and CheckMATE

Arghya Choudhury

- Many UV complete models with a Z' also contain an extended scalar sector. (see for example: Basso, Fischer and vd Bij 2013)
- We consider a Z' vector boson associated to a new symmetry $U(1)_X$.
- A hypothetical extended scalar sector that will include, among others, a U(1)_X-neutral SM singlet field s that couples to the SM Higgs and the DM particle.
- If all other degrees of freedom are decoupled, the low energy Lagrangian is just the sum of:

$$\mathcal{L} \supset Z'_{\mu} ar{\chi} \gamma^{\mu} (g^{V}_{\chi} - g^{A}_{\chi} \gamma_{5}) \chi + \sum_{i} Z'_{\mu} ar{q}_{i} \gamma^{\mu} (g^{V}_{q} - g^{A}_{q} \gamma_{5}) q_{i}$$

$$\mathcal{L} \supset -y_{\chi} \left(h_{\mathrm{SM}} sin heta + H\cos heta
ight) ar{\chi} \chi - rac{1}{\sqrt{2}} \left(h_{\mathrm{SM}} cos heta - H\sin heta
ight) \sum_{f} y_{f} far{f}$$

- (a) $m_{\chi} = 10 \text{ GeV}$, $m_{Z'} = 1000$, $\theta = 0.2$ and $m_H = 600$; (b) $m_{\chi} = 100 \text{ GeV}$.
- (c) Same as (a) but the sign of y_{χ} is negative. (d) Same as (c) but $m_{\chi} = 100 \text{ GeV}$.

- the DD detection bound on g^V_{χ/q} from LUX is significantly more constraining then any of the collider limits.
- For $m_{\chi} \lesssim 62 \ GeV$, the invisible width of $h \rightarrow$ places an upper bound on $y_{\chi} \rightarrow$ stronger than the projected reach of tonne-scale detectors.

- the DD detection bound on g^V_{χ/q} from LUX is significantly more constraining then any of the collider limits.
- For $m_{\chi} \lesssim 62 \ GeV$, the invisible width of $h \rightarrow$ places an upper bound on $y_{\chi} \rightarrow$ stronger than the projected reach of tonne-scale detectors.
- For $y_{\chi} < 0$, or if it is positive but $g_{\chi}^V = -g_q^V$, the diagrams corresponding to the Z' and Higgs portal interfere destructively and $\sigma_p^{\rm SI}$ becomes suppressed.
- the condition for the blind spot: $y_{\chi} \approx$

$$-\left(\frac{8.22\times10^7 \text{ GeV}^2}{m_{Z'}^2}\right)\frac{g_\chi^V g_\chi^V}{\sin 2\theta \left(1-\frac{m_{h_{\rm SM}}^2}{m_H^2}\right)}$$

- Interplay of LHC constraints for the blind spot.
- for most of the parameter space the di-top and di-jet searches for heavy resonances are more sensitive to $g_{V/q}^V$ than the mono-jet search for DM.
- There remains a significant dependence on the underlying assumptions.

Arghya Choudhury

Comparison of the limits from mono-jet Vs Di-top(jet)

- For $g_{\chi}^V \neq g_q^V$ the upper bounds will move in the $(y_{\chi}, \sqrt{g_q^V g_{\chi}^V})$ plane.
- for $g_{\chi}^V < g_q^V$ the upper bounds from di-top and di-jet searches will become stronger.
- For $g_{\chi}^V > g_q^V$ it will be the other way around.

Model 2: combining Higgs portal and squarks

• $y_{\chi} > 0 \rightarrow$ no cancellations for σ_p^{SI} .

- The condition for the blind spot: $y_{\chi} \approx -\left(\frac{2.05 \times 10^7 \text{ GeV}^2}{m_q^2 m_{\chi}^2}\right) \frac{g_{\tilde{q}}^2}{\sin 2\theta \left(1 \frac{m_{h_{\text{SM}}}^2}{m_H^2}\right)}$.
- The parameter space that is not in reach of underground DD experiments remains essentially unconstrained.
- $m_{\tilde{q}} = 1000 \text{ GeV} \rightarrow \text{the 14 TeV jets} + \text{MET}$ and mono-jet searches $\rightarrow \text{ expected to}$ exclude the full parameter space.

Arghya Choudhury

- Interplay of LHC constraints for the blind spot.
- Invisible Brs of the Higgs yields the greatest constraint when $m_{\chi} < 62.5 \text{ GeV}$.

- Jets + MET (blue) and mono-jet (purple) searches dominate in different regions of the parameter space.

• A first simple way \rightarrow DM particle and the quarks have the same charges under $U(1)_X \rightarrow$ scalar colored particles are instead $U(1)_X$ neutral. \rightarrow the extra scalars do not couple to the $Z' \rightarrow$ No destructive interference between the diagrams with squark exchange and those with a Z' mediator.

• Another way of constructing a gauge invariant LSMS \rightarrow Allow the squarks to have the same coupling to the Z' as the quarks \rightarrow an approximation of a full UV theory involving an extended gauge symmetry and a supersymmetric sector.

• One needs two fermion SM singlet DM candidates, ξ and ζ , such that ξ is coupled to the Z' and ζ is coupled to the squarks. The symmetry is conserved if the fields are charged under $U(1)_X$ according to :

	Ψ	ξ	ζ	qi	$\tilde{q}_{i,L/R}$
$U(1)_X$ charge	+1	+1	0	+1	+1

• Despite being apparently rather involved, the phenomenological LSMS is characterized by only 6 free parameters, $\{m_{\chi}, m_{\tilde{q}}, m_{Z'}, g_{\chi}^V, g_{q}^V, g_{\tilde{q}}\}$. (additional assumption $g_{\chi}^V = \pm g_q^V \equiv g_{\chi/q}^V$)

- The condition for the blind spot: $|g_{\tilde{q}}| \approx 2 \left| g_{\chi/q}^V \right| \frac{\sqrt{m_{\tilde{q}}^2 m_{\chi}^2}}{m_{Z'}}$.
- mono-jet and jets+MET ATLAS searches yield very comparable bounds.
- for these mediator masses, the 14 TeV projected reach for both searches covers the full parameter space.

Arghya Choudhury

- Dependence of the collider bounds on the mediators' mass.
- The condition for the blind spot: $|g_{\tilde{q}}| \approx 2 \left| g_{\chi/q}^V \right| \frac{\sqrt{m_{\tilde{q}}^2 m_{\chi}^2}}{m_{Z'}}$.
- For $g_{\chi/q}^V = 0.1$, Z' mass below $\sim 700 \ GeV$ is excluded by the di-top search.
- For $g_{\chi/q}^V = 0.4$, one can probe the squark mediator mass up to ~ 2000 GeV and Z' mass up to more than 3000 GeV.

Arghya Choudhury

Summary:

- We considered three cases characterized by a Dirac fermion WIMP coupled to more than one mediator.
- \bullet Interference between different diagrams \rightarrow gives rise to blind spots for DD experiments.
- The LUX upper bound on $\sigma_{\rho}^{\rm SI}$ constrains the coupling constants of WIMP SMS by at least one order of magnitude more strongly (Exceptions $\rightarrow m_{\chi} \lesssim 1/2 m_{h_{\rm SM}}$).
- LUX bounds also outperforms projected reach for 14 TeV LHC in most cases.
- The model involving a Z' and Higgs portal \rightarrow not constrained at all by mono-jet searches in the blind spot if $g_{\chi}^{V} = g_{q}^{V}$.
- For the LHC 14 TeV \rightarrow heavy Z' resonances will constitute the most effective strategy.
- Models involving squark-like mediators the bounds from mono-jet and jets+MET searches on the coupling g_{q̃} are at present comparable.
- The reach of 14 TeV LHC jets+MET searches for the blind spots significantly outperforms the expectations for mono-jet searches.

Arghya Choudhury

THANK YOU

Arghya Choudhury

Back Up

The differential WIMP-nucleus scattering cross section in the non-relativistic limit:

$$\frac{d\sigma_{\chi N}}{d|\mathbf{q}|^2} = \frac{1}{\pi v_{\chi}^2} \left[Zf_p + (A - Z)f_n \right]^2 F^2(Q) \qquad \text{Jungman, Kamionkowski and Griest (1996)}$$

 $|\mathbf{q}|$ - transferred momentum, Z - atomic number, A the atomic weight, v_{χ} - average speed of the DM in the halo, and F(Q) is the Wood-Saxon function as a function of $Q = |\mathbf{q}|^2 / 2m_N$.

$$f_n \approx f_p \approx \frac{y_\chi \sin 2\theta}{4 m_{h_{\rm SM}}^2} \left(1 - \frac{m_{h_{\rm SM}^2}}{m_H^2}\right) \frac{m_p}{v} \left(\sum_{q=u,d,s} f_{Tq} + \frac{2}{9} f_{TG}\right) + \frac{3}{2} \frac{g_\chi^V g_q^V}{m_{Z'}^2}$$

In the relativistic WIMP-quark scattering, $q(p_1)\chi(p_3) \rightarrow q(p_2)\chi(p_4)$, the squared amplitude reads:

$$\begin{aligned} \left|\mathcal{A}\right|^{2} &= 2 \frac{\sin^{2} 2\theta y_{q}^{2} y_{\chi}^{2} (m_{p}^{2} + p_{1} p_{2}) (m_{\chi}^{2} + p_{3} p_{4})}{[(p_{1} - p_{2})^{2} - m_{b_{\mathrm{SM}}}^{2}]^{2}} + \frac{(g_{\chi}^{V} g_{\chi}^{V})^{2} (16m_{p}^{2} - 8p_{1} p_{2}) (16m_{\chi}^{2} - 8p_{3} p_{4})}{[(p_{1} - p_{2})^{2} - m_{b_{\mathrm{SM}}}^{2}]^{2}} \\ &+ \frac{16}{\sqrt{2}} \frac{\sin 2\theta y_{q} y_{\chi} g_{\chi}^{V} g_{q}^{V} m_{p} m_{\chi} (p_{1} + p_{2})^{\mu} (p_{3} + p_{4})_{\mu}}{[(p_{1} - p_{2})^{2} - m_{b_{\mathrm{SM}}}^{2}]} \end{aligned}$$

the condition for the blind spot: $y_{\chi} \approx -\left(\frac{8.22 \times 10^7 \text{ GeV}^2}{m_Z^2}\right) \frac{g_\chi^V g_q^V}{\sin 2\theta \left(1-\frac{m_{h_{\rm SM}}^2}{m_H^2}\right)}$.

Arghya Choudhury

Model 2: combining Higgs portal and squarks

$$\begin{split} f_n &\approx f_p \approx \frac{y_\chi \sin 2\theta}{4 \, m_{h_{\rm SM}}^2} \left(1 - \frac{m_{h_{\rm SM}^2}}{m_H^2}\right) \frac{m_p}{v} \left(\sum_{q=u,d,s} f_{Tq} + \frac{2}{9} \, f_{TG}\right) \\ &+ \frac{m_p}{m_q} \left(\mathcal{C}_{\rm tree} \sum_{q=u,d,s} f_{Tq} + \mathcal{C}_{\rm box} \, f_{TG}\right) \frac{g_{\tilde{q}}^2}{m_{\tilde{q}}^2 - m_\chi^2} \end{split}$$

the condition for the blind spot:

$$y_\chi pprox - \left(rac{2.05 imes 10^7 \ {
m GeV}^2}{m_{ ilde q}^2 - m_\chi^2}
ight) rac{g_{ ilde q}^2}{\sin 2 heta \ \left(1 - rac{m_{h_{
m SM}}^2}{m_H^2}
ight)} \; .$$

Model 2: Cross section for squark production

- Cross section for squark production through *t*-channel DM exchange at the LHC.
- Solid black line shows the cross section for strong squark production.
- The cross sections for strong and *t*-channel DM exchange production of the squarks become of equal size when $g_{\tilde{q}} \approx 0.9$

• One needs two fermion SM singlet DM candidates, ξ and ζ , such that ξ is coupled to the Z' and ζ is coupled to the squarks. The symmetry is conserved if the fields are charged under $U(1)_X$ according to :

	Ψ	ξ	ζ	qi	$\tilde{q}_{i,L/R}$
$U(1)_X$ charge	+1	+1	0	+1	+1

• The low energy Lagrangian can contain the additional terms,

$$\mathcal{L} \supset y_1 \Psi \bar{\xi} \zeta + \frac{1}{2} m_{\xi} \bar{\xi} \xi + \frac{1}{2} m_{\zeta} \bar{\zeta} \zeta + \text{ h.c.}$$

where Ψ is the field that breaks $U(1)_X$ when it gets a vev $\Psi \rightarrow v_{\Psi} + \psi$, with ψ a decoupled physical scalar.

• After the symmetry is broken, ξ and ζ mix giving rise to two mass eigenstates: χ_1 and χ_2 which, if we assume $m_{\xi}, m_{\zeta} \ll y_1 v_{\Psi}$, are almost mass degenerate with a mass $m_{\chi} = y_1 v_{\Psi}$ and maximal mixing.

• Despite being apparently rather involved, the phenomenological LSMS is characterized by only 6 free parameters, $\{m_{\chi}, m_{\tilde{q}}, m_{Z'}, g_{\chi}^V, g_{q}^V, g_{\tilde{q}}^V\}$.